Performance Enhancement of P300 Detection by Multiscale-CNN

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 特征提取 人工神经网络 脑电图 特征(语言学)
作者
Hongtao Wang,Zian Pei,Linfeng Xu,Tao Xu,Anastasios Bezerianos,Yu Sun,Junhua Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:1
标识
DOI:10.1109/tim.2021.3067943
摘要

The P300-based spelling system is one of the most popular brain–computer interface applications. Its success largely depends on performance, including the information transmission rate (ITR) and detection rate (i.e., accuracy). To achieve good performance, we proposed a multiscale convolutional neural network (MS-CNN) model that consists of seven layers. First, an upfront data set was used to train the MS-CNN, aiming to obtain a subject-unspecific model (universal model) for P300 detection. Second, this universal model was adapted by a portion of data derived from a subject to update the model to obtain a subject-specific model by incorporating a transfer learning technique. We applied the proposed model in the brain–computer interface (BCI) Controlled Robot Contest at the 2019 World Robot Conference, and our performance was the best among the teams in the contest. In the contest, ten healthy young subjects were randomly assigned by the contest committee to assess the model. Our model achieved the best P300 detection performance (higher accuracy with less repetition time). The ITR for the subject-unspecific case was 13.49 bits/min, while the ITR for the subject-specific case was 12.13 bits/min when the repetitions were fewer than six. It is believed that our method may pave a promising path for taking a further step toward efficient implementation of the P300-based spelling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
minsun完成签到,获得积分10
刚刚
冰魂应助和谐幻柏采纳,获得10
刚刚
1秒前
科研通AI5应助一只建筑汪采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
lzh完成签到,获得积分10
3秒前
LY发布了新的文献求助20
3秒前
阔达紫青应助WJ采纳,获得10
3秒前
st89225完成签到,获得积分10
4秒前
4秒前
喜宝完成签到 ,获得积分10
5秒前
aimer发布了新的文献求助10
6秒前
6秒前
风尘造次发布了新的文献求助10
6秒前
6秒前
7秒前
隐形曼青应助王碱采纳,获得10
7秒前
cxy_2010发布了新的文献求助10
7秒前
8秒前
8秒前
lucky驳回了Hello应助
8秒前
beleve完成签到,获得积分10
9秒前
L77发布了新的文献求助10
9秒前
JamesPei应助一二采纳,获得10
10秒前
坚强的哈密瓜完成签到,获得积分10
10秒前
小二郎应助大漂亮采纳,获得10
10秒前
10秒前
11秒前
奕奕发布了新的文献求助10
11秒前
小魏哥哥完成签到,获得积分10
11秒前
情怀应助rr采纳,获得10
11秒前
姗姗完成签到,获得积分10
12秒前
trtr发布了新的文献求助30
12秒前
和谐幻柏完成签到,获得积分10
12秒前
彩色的德地完成签到,获得积分10
12秒前
传奇3应助风尘造次采纳,获得10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774200
求助须知:如何正确求助?哪些是违规求助? 3319877
关于积分的说明 10197394
捐赠科研通 3034433
什么是DOI,文献DOI怎么找? 1665030
邀请新用户注册赠送积分活动 796533
科研通“疑难数据库(出版商)”最低求助积分说明 757510