热传导
数学
相对论热传导
热方程
热流密度
工作(物理)
应用数学
理论(学习稳定性)
数学分析
传热
热力学
计算机科学
物理
机器学习
标识
DOI:10.1016/j.camwa.2022.05.020
摘要
It is necessary to use more general models than the classical Fourier heat conduction law to describe small-scale thermal conduction processes. The effects of heat flow memory and heat capacity memory (internal energy) in solids are considered in first-order integrodifferential evolutionary equations with difference-type kernels. The main difficulties in applying such nonlocal in-time mathematical models are associated with the need to work with a solution throughout the entire history of the process. The paper develops an approach to transforming a nonlocal problem into a computationally simpler local problem for a system of first-order evolution equations. Such a transition is applicable for heat conduction problems with memory if the relaxation functions of the heat flux and heat capacity are represented as a sum of exponentials. The correctness of the auxiliary linear problem is ensured by the obtained estimates of the stability of the solution concerning the initial data and the right-hand side in the corresponding Hilbert spaces. The study's main result is to prove the unconditional stability of the proposed two-level scheme with weights for the evolutionary system of equations for modeling heat conduction in solid media with memory. In this case, finding an approximate solution on a new level in time is not more complicated than the classical heat equation. The numerical solution of a model one-dimensional in space heat conduction problem with memory effects is presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI