Opportunistic Osteoporosis Screening Using Chest Radiographs With Deep Learning: Development and External Validation With a Cohort Dataset

医学 骨质疏松症 射线照相术 股骨颈 接收机工作特性 置信区间 队列 曲线下面积 放射科 物理疗法 核医学 内科学
作者
Miso Jang,Mingyu Kim,Sung Jin Bae,Seung Hun Lee,Jung‐Min Koh,Namkug Kim
出处
期刊:Journal of Bone and Mineral Research [Wiley]
卷期号:37 (2): 369-377 被引量:48
标识
DOI:10.1002/jbmr.4477
摘要

ABSTRACT Osteoporosis is a common, but silent disease until it is complicated by fractures that are associated with morbidity and mortality. Over the past few years, although deep learning-based disease diagnosis on chest radiographs has yielded promising results, osteoporosis screening remains unexplored. Paired data with 13,026 chest radiographs and dual-energy X-ray absorptiometry (DXA) results from the Health Screening and Promotion Center of Asan Medical Center, between 2012 and 2019, were used as the primary dataset in this study. For the external test, we additionally used the Asan osteoporosis cohort dataset (1089 chest radiographs, 2010 and 2017). Using a well-performed deep learning model, we trained the OsPor-screen model with labels defined by DXA based diagnosis of osteoporosis (lumbar spine, femoral neck, or total hip T-score ≤ −2.5) in a supervised learning manner. The OsPor-screen model was assessed in the internal and external test sets. We performed substudies for evaluating the effect of various anatomical subregions and image sizes of input images. OsPor-screen model performances including sensitivity, specificity, and area under the curve (AUC) were measured in the internal and external test sets. In addition, visual explanations of the model to predict each class were expressed in gradient-weighted class activation maps (Grad-CAMs). The OsPor-screen model showed promising performances. Osteoporosis screening with the OsPor-screen model achieved an AUC of 0.91 (95% confidence interval [CI], 0.90–0.92) and an AUC of 0.88 (95% CI, 0.85–0.90) in the internal and external test set, respectively. Even though the medical relevance of these average Grad-CAMs is unclear, these results suggest that a deep learning-based model using chest radiographs could have the potential to be used for opportunistic automated screening of patients with osteoporosis in clinical settings. © 2021 American Society for Bone and Mineral Research (ASBMR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjcy应助忧伤的冰安采纳,获得10
刚刚
Zp完成签到,获得积分10
刚刚
一只饺子应助hy123123采纳,获得30
1秒前
小芳芳发布了新的文献求助10
1秒前
1秒前
chenbin完成签到,获得积分10
2秒前
所所应助haku采纳,获得10
2秒前
李爱国应助小泽66689采纳,获得10
2秒前
古风完成签到 ,获得积分10
2秒前
藏马完成签到,获得积分10
2秒前
lll发布了新的文献求助10
2秒前
落寞太阳完成签到,获得积分10
3秒前
3秒前
sunshine发布了新的文献求助10
4秒前
4秒前
FashionBoy应助无私雪碧采纳,获得10
4秒前
波安班发布了新的文献求助10
4秒前
5秒前
安静的绿海完成签到,获得积分10
5秒前
Simple1324完成签到,获得积分10
6秒前
SCL完成签到,获得积分10
6秒前
学习者完成签到,获得积分10
6秒前
7秒前
djh完成签到,获得积分10
7秒前
7秒前
dew完成签到,获得积分10
7秒前
领导范儿应助可青采纳,获得10
7秒前
8秒前
爱科研发布了新的文献求助10
8秒前
8秒前
tttccc发布了新的文献求助10
8秒前
我是老大应助RRR采纳,获得10
8秒前
小芳芳完成签到,获得积分20
9秒前
9秒前
9秒前
亦屿森发布了新的文献求助10
9秒前
ttttt完成签到,获得积分10
9秒前
10秒前
刚好完成签到,获得积分10
10秒前
能干水蓝发布了新的文献求助10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249492
求助须知:如何正确求助?哪些是违规求助? 2892747
关于积分的说明 8273806
捐赠科研通 2560989
什么是DOI,文献DOI怎么找? 1389389
科研通“疑难数据库(出版商)”最低求助积分说明 651164
邀请新用户注册赠送积分活动 627958