Opportunistic Osteoporosis Screening Using Chest Radiographs With Deep Learning: Development and External Validation With a Cohort Dataset

医学 骨质疏松症 射线照相术 股骨颈 接收机工作特性 置信区间 队列 曲线下面积 放射科 物理疗法 核医学 内科学
作者
Miso Jang,Mingyu Kim,Sung Jin Bae,Seung Hun Lee,Jung‐Min Koh,Namkug Kim
出处
期刊:Journal of Bone and Mineral Research [Wiley]
卷期号:37 (2): 369-377 被引量:48
标识
DOI:10.1002/jbmr.4477
摘要

ABSTRACT Osteoporosis is a common, but silent disease until it is complicated by fractures that are associated with morbidity and mortality. Over the past few years, although deep learning-based disease diagnosis on chest radiographs has yielded promising results, osteoporosis screening remains unexplored. Paired data with 13,026 chest radiographs and dual-energy X-ray absorptiometry (DXA) results from the Health Screening and Promotion Center of Asan Medical Center, between 2012 and 2019, were used as the primary dataset in this study. For the external test, we additionally used the Asan osteoporosis cohort dataset (1089 chest radiographs, 2010 and 2017). Using a well-performed deep learning model, we trained the OsPor-screen model with labels defined by DXA based diagnosis of osteoporosis (lumbar spine, femoral neck, or total hip T-score ≤ −2.5) in a supervised learning manner. The OsPor-screen model was assessed in the internal and external test sets. We performed substudies for evaluating the effect of various anatomical subregions and image sizes of input images. OsPor-screen model performances including sensitivity, specificity, and area under the curve (AUC) were measured in the internal and external test sets. In addition, visual explanations of the model to predict each class were expressed in gradient-weighted class activation maps (Grad-CAMs). The OsPor-screen model showed promising performances. Osteoporosis screening with the OsPor-screen model achieved an AUC of 0.91 (95% confidence interval [CI], 0.90–0.92) and an AUC of 0.88 (95% CI, 0.85–0.90) in the internal and external test set, respectively. Even though the medical relevance of these average Grad-CAMs is unclear, these results suggest that a deep learning-based model using chest radiographs could have the potential to be used for opportunistic automated screening of patients with osteoporosis in clinical settings. © 2021 American Society for Bone and Mineral Research (ASBMR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助贪吃的猴子采纳,获得10
2秒前
2秒前
可爱的彩虹完成签到,获得积分10
2秒前
小确幸完成签到,获得积分10
2秒前
彭于晏应助毛毛虫采纳,获得10
3秒前
LilyChen完成签到 ,获得积分10
3秒前
Owen应助Su采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
yyyy关注了科研通微信公众号
5秒前
Jane完成签到 ,获得积分10
6秒前
6秒前
6秒前
kento发布了新的文献求助30
6秒前
Akim应助balzacsun采纳,获得10
7秒前
狼来了aas发布了新的文献求助10
7秒前
8秒前
didi完成签到,获得积分10
8秒前
嘻嘻发布了新的文献求助10
10秒前
冲冲冲完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
善良身影完成签到,获得积分10
13秒前
天天快乐应助郭豪琪采纳,获得10
14秒前
13679165979发布了新的文献求助10
16秒前
13679165979发布了新的文献求助10
16秒前
13679165979发布了新的文献求助10
16秒前
13679165979发布了新的文献求助10
16秒前
13679165979发布了新的文献求助10
16秒前
16秒前
Su发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824