A novel hybrid ensemble model based on tree-based method and deep learning method for default prediction

计算机科学 人工智能 机器学习 集成学习 深度学习 特征选择 特征(语言学) 集合预报 卷积神经网络 特征学习 人工神经网络 决策树 分类器(UML) 模式识别(心理学) 语言学 哲学
作者
Hongliang He,Yanli Fan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:176: 114899-114899 被引量:42
标识
DOI:10.1016/j.eswa.2021.114899
摘要

• A novel hybrid ensemble model for default prediction is proposed. • LightGBM is used to build new feature interactions to enhance feature expression. • CNN is used to build new feature interactions to reflect deeper information. • Ensemble model combining deep learning and tree-based classifiers are used. • The proposed model outperforms comparative methods in four evaluation metrics. Default prediction plays an important role in emerging financial market, so it has attracted extensive attention from financial industry and academic community. A slight improvement in default prediction performance can avoid huge economic losses. Many existing studies have used feature selection to improve the performance of default prediction models but paid limited attention to feature generation. Additionally, deep learning methods have been gradually explored for classification problems. In this study, a novel hybrid ensemble model is proposed to improve the performance of default prediction. First, a tree-based method (i.e., LightGBM) is used to learn new feature interactions and enhance the representation of original features. Second, a deep learning method (i.e., Convolutional Neural Network) is used as feature generation method to generate deeper feature interactions. Moreover, the structure of Inner Product-based Neural Network (IPNN) is used as deep learning classifier to learn feature interactions and reach a good trade-off between predictive accuracy and complexity. Third, ensemble learning method is used to combine the deep learning classifier with tree-based classifiers to obtain superior predictive results. Finally, two default datasets and four evaluation metrics are used to measure the predictive performance. The experimental results show that each component of the proposed model has significant improvement on overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
1秒前
3秒前
Weiyu完成签到,获得积分10
3秒前
奥特斌完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助白衣修身采纳,获得10
3秒前
冷语发布了新的文献求助10
4秒前
迷路老鼠完成签到,获得积分10
5秒前
研友_LkYPzZ完成签到,获得积分10
5秒前
ZYC发布了新的文献求助10
6秒前
6秒前
6秒前
Zoeytam完成签到,获得积分10
7秒前
7秒前
似我完成签到,获得积分10
7秒前
旺仔不甜完成签到,获得积分10
7秒前
匪石完成签到,获得积分10
9秒前
jimey发布了新的文献求助10
10秒前
TANG发布了新的文献求助10
10秒前
冰水混合物完成签到,获得积分10
11秒前
郝宝真发布了新的文献求助10
11秒前
12秒前
12秒前
科目三应助璟晔采纳,获得10
13秒前
ZYC完成签到,获得积分10
13秒前
mimi发布了新的文献求助10
14秒前
17秒前
科研靓仔发布了新的文献求助10
18秒前
Apocalypse_zjz完成签到,获得积分10
18秒前
子车半烟完成签到,获得积分10
18秒前
竹外桃花完成签到,获得积分10
19秒前
可爱的函函应助建安采纳,获得10
19秒前
20秒前
Phoenix完成签到 ,获得积分10
20秒前
竹外桃花发布了新的文献求助10
21秒前
23秒前
万能图书馆应助mimi采纳,获得10
23秒前
bowler完成签到,获得积分10
24秒前
天才小能喵完成签到 ,获得积分0
24秒前
25秒前
笨笨歌曲发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023