已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel hybrid ensemble model based on tree-based method and deep learning method for default prediction

计算机科学 人工智能 机器学习 集成学习 深度学习 特征选择 特征(语言学) 集合预报 卷积神经网络 特征学习 人工神经网络 决策树 分类器(UML) 模式识别(心理学) 语言学 哲学
作者
Hongliang He,Yanli Fan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:176: 114899-114899 被引量:42
标识
DOI:10.1016/j.eswa.2021.114899
摘要

• A novel hybrid ensemble model for default prediction is proposed. • LightGBM is used to build new feature interactions to enhance feature expression. • CNN is used to build new feature interactions to reflect deeper information. • Ensemble model combining deep learning and tree-based classifiers are used. • The proposed model outperforms comparative methods in four evaluation metrics. Default prediction plays an important role in emerging financial market, so it has attracted extensive attention from financial industry and academic community. A slight improvement in default prediction performance can avoid huge economic losses. Many existing studies have used feature selection to improve the performance of default prediction models but paid limited attention to feature generation. Additionally, deep learning methods have been gradually explored for classification problems. In this study, a novel hybrid ensemble model is proposed to improve the performance of default prediction. First, a tree-based method (i.e., LightGBM) is used to learn new feature interactions and enhance the representation of original features. Second, a deep learning method (i.e., Convolutional Neural Network) is used as feature generation method to generate deeper feature interactions. Moreover, the structure of Inner Product-based Neural Network (IPNN) is used as deep learning classifier to learn feature interactions and reach a good trade-off between predictive accuracy and complexity. Third, ensemble learning method is used to combine the deep learning classifier with tree-based classifiers to obtain superior predictive results. Finally, two default datasets and four evaluation metrics are used to measure the predictive performance. The experimental results show that each component of the proposed model has significant improvement on overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小蜻蜓采纳,获得30
刚刚
LUCKY发布了新的文献求助10
刚刚
1秒前
张不大发布了新的文献求助10
1秒前
土拨鼠完成签到 ,获得积分10
1秒前
1秒前
丘比特应助surgeon_mq采纳,获得10
2秒前
淡淡博发布了新的文献求助10
2秒前
3秒前
4秒前
科研通AI5应助RootShanno采纳,获得10
5秒前
Sherlock完成签到,获得积分10
6秒前
zwxzghgz完成签到,获得积分10
6秒前
6秒前
7秒前
苏苏发布了新的文献求助10
7秒前
Evan完成签到 ,获得积分10
7秒前
xaopng完成签到,获得积分10
7秒前
养猪骑士发布了新的文献求助10
8秒前
9秒前
汤泽琪发布了新的文献求助10
10秒前
威武鸵鸟发布了新的文献求助30
10秒前
科研百晓生完成签到 ,获得积分10
11秒前
张不大完成签到,获得积分10
12秒前
点点完成签到 ,获得积分10
13秒前
雍雍完成签到 ,获得积分10
15秒前
彭于晏应助是顾未易吖采纳,获得10
16秒前
自由冬亦完成签到,获得积分10
16秒前
丹青完成签到 ,获得积分10
18秒前
18秒前
18秒前
国色不染尘完成签到,获得积分10
18秒前
19秒前
史小菜应助zz采纳,获得30
19秒前
霸气的匕完成签到 ,获得积分10
19秒前
养猪骑士完成签到,获得积分20
19秒前
空里流霜不觉飞完成签到 ,获得积分10
19秒前
Percy发布了新的文献求助10
22秒前
笔墨今宵发布了新的文献求助10
23秒前
surgeon_mq发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629