A novel hybrid ensemble model based on tree-based method and deep learning method for default prediction

计算机科学 人工智能 机器学习 集成学习 深度学习 特征选择 特征(语言学) 集合预报 卷积神经网络 特征学习 人工神经网络 决策树 分类器(UML) 模式识别(心理学) 语言学 哲学
作者
Hongliang He,Yanli Fan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:176: 114899-114899 被引量:42
标识
DOI:10.1016/j.eswa.2021.114899
摘要

• A novel hybrid ensemble model for default prediction is proposed. • LightGBM is used to build new feature interactions to enhance feature expression. • CNN is used to build new feature interactions to reflect deeper information. • Ensemble model combining deep learning and tree-based classifiers are used. • The proposed model outperforms comparative methods in four evaluation metrics. Default prediction plays an important role in emerging financial market, so it has attracted extensive attention from financial industry and academic community. A slight improvement in default prediction performance can avoid huge economic losses. Many existing studies have used feature selection to improve the performance of default prediction models but paid limited attention to feature generation. Additionally, deep learning methods have been gradually explored for classification problems. In this study, a novel hybrid ensemble model is proposed to improve the performance of default prediction. First, a tree-based method (i.e., LightGBM) is used to learn new feature interactions and enhance the representation of original features. Second, a deep learning method (i.e., Convolutional Neural Network) is used as feature generation method to generate deeper feature interactions. Moreover, the structure of Inner Product-based Neural Network (IPNN) is used as deep learning classifier to learn feature interactions and reach a good trade-off between predictive accuracy and complexity. Third, ensemble learning method is used to combine the deep learning classifier with tree-based classifiers to obtain superior predictive results. Finally, two default datasets and four evaluation metrics are used to measure the predictive performance. The experimental results show that each component of the proposed model has significant improvement on overall performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助xx采纳,获得10
1秒前
Zzx完成签到,获得积分10
1秒前
2秒前
沉静的煎蛋完成签到,获得积分10
2秒前
轨迹应助huhuhuhuxuan采纳,获得30
3秒前
4秒前
悦耳白山应助Zzx采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
anubisi完成签到,获得积分10
7秒前
DezhaoWang完成签到,获得积分10
7秒前
7秒前
吕亦寒完成签到,获得积分10
8秒前
qqq发布了新的文献求助10
10秒前
10秒前
内敛诚C完成签到 ,获得积分10
10秒前
zoe完成签到,获得积分10
11秒前
随逸完成签到,获得积分10
11秒前
12秒前
pjjpk01完成签到,获得积分10
12秒前
zzz完成签到,获得积分20
12秒前
西木完成签到,获得积分10
12秒前
xbw发布了新的文献求助10
13秒前
胖莹完成签到 ,获得积分10
13秒前
吕亦寒发布了新的文献求助10
14秒前
眼睛大凤完成签到 ,获得积分10
15秒前
嘎嘎板正完成签到,获得积分10
15秒前
16秒前
阔达的夜山完成签到,获得积分10
18秒前
Peter完成签到,获得积分10
18秒前
琦琦z发布了新的文献求助10
18秒前
勤劳尔丝完成签到 ,获得积分10
19秒前
桃桃杨乐多完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
tomorrow完成签到,获得积分10
19秒前
小仙女发布了新的文献求助10
21秒前
李健的小迷弟应助hhy采纳,获得10
21秒前
22秒前
22秒前
cicytjsxjr发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742127
求助须知:如何正确求助?哪些是违规求助? 5406259
关于积分的说明 15344129
捐赠科研通 4883566
什么是DOI,文献DOI怎么找? 2625108
邀请新用户注册赠送积分活动 1573970
关于科研通互助平台的介绍 1530929