自噬
安普克
PI3K/AKT/mTOR通路
下调和上调
细胞凋亡
金丝桃苷
化学
体内
药理学
蛋白激酶A
医学
癌症研究
激酶
生物
生物化学
抗氧化剂
槲皮素
生物技术
基因
作者
Yun Gao,Xiaoye Fan,Wenjing Gu,Xinxin Ci,Liping Peng
标识
DOI:10.1016/j.phrs.2021.105561
摘要
Autophagy-mediated cell death plays a critical role in the pathogenesis of PMs-induced lung injury. Hyperoside (Hyp), a flavonoid glycosides, is known to exert protective effects on many diseases by inhibiting autophagic activity. The current study aimed to explore the protective effect and mechanism of Hyp against PMs-induced lung injury in PM2.5 challenged Beas-2b cells in vitro and BALB/C mice in vivo. In vitro, we found that the organic solvent-extractable fraction of SRM1649b (O-PMs) caused more severe cytotoxicity in Beas-2b cells than the water solvent-extractable fraction of SRM1649b (W-PMs). O-PMs treatment dose-dependently upregulated the expression of autophagy markers (beclin-1, p62, atg3 and LC3II) and apoptotic proteins. This cytotoxicity of O-PMs was attenuated by Hyp pretreatment in parallel with downregulation of the expression of autophagy markers, apoptotic proteins, and p-AMPK and upregulation of p-mTOR expression. Notably, the therapeutic effect of Hyp was attenuated by pretreated with AICAR (an AMPK inducer), but enhanced by CC and 3-MA treatment. In vivo, Hyp reduced pathological lung injury and decreased the levels of PMs-induced inflammatory cytokines (TNF-α and IL-6), and the number of total cells in the BALF by inhibiting AMPK/mTOR signaling. Furthermore, cotreatment with AICAR (500 mg/kg) reduced but did not abrogate the pulmonary protective effect of Hyp. These findings indicate that Hyp protects against PMs-induced lung injury by suppressing autophagy deregulation and apoptosis through regulation of the AMPK/mTOR pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI