Multifeature fusion action recognition based on key frames

计算机科学 人工智能 动作识别 关键帧 计算机视觉 加权 模式识别(心理学) 特征提取 合并(版本控制) 卷积神经网络 冗余(工程) 钥匙(锁) 帧(网络) 情报检索 放射科 操作系统 电信 医学 班级(哲学) 计算机安全
作者
Yuerong Zhao,Hongbo Guo,Ling Gao,Hai Wang,Jie Zheng,Kan Zhang,Zheng Yong
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (21) 被引量:5
标识
DOI:10.1002/cpe.6137
摘要

Summary As an important technology in computer vision, video‐based human action recognition has a great commercial value, which has attracted extensive attention in the field of computer vision and pattern recognition in both academia and industry. To date, there are a wide variety of applications of human action recognition, such as surveillance, robotics, health care, video searching, and human–computer interaction. However, there are many challenges involved in human action recognition in videos, such as cluttered backgrounds, occlusions, viewpoint variation, execution rate, and camera motion. However, data redundancy and single feature were largely limited the accuracy of human action recognition. In this article, adopting the key frame extraction and multifeature fusion techniques, a novel action recognition method was proposed, which can improve the recognition accuracy. The main works are as follows: 1) in order to solve the problem of data redundancy, a key frame extraction method based on node contribution weighting is proposed to extract video key frames; 2) different kinds of information flows are extracted from the obtained key frame sequences, and different convolutional neural networks are used to obtain corresponding classification results and merge, so as to better complement the information in different flows. Lastly, the experimental results show that our method improves the accuracy of action recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1111发布了新的文献求助10
1秒前
2秒前
从容的鹰完成签到,获得积分20
2秒前
李健的粉丝团团长应助YYL采纳,获得10
3秒前
3秒前
wzzhhh完成签到,获得积分10
4秒前
5秒前
酷波er应助含蓄小兔子采纳,获得10
5秒前
accept111完成签到,获得积分10
5秒前
COCOYuu完成签到,获得积分10
5秒前
冷水鱼完成签到,获得积分10
5秒前
5秒前
6秒前
落后鸭子完成签到,获得积分10
6秒前
李志华完成签到,获得积分10
6秒前
wxxx完成签到,获得积分10
6秒前
机灵鼠标完成签到,获得积分20
7秒前
哈哈呵完成签到,获得积分10
7秒前
8秒前
绿荫完成签到,获得积分10
8秒前
香蕉觅云应助馒头采纳,获得10
8秒前
铭铭完成签到,获得积分10
8秒前
陈瑞鸥发布了新的文献求助30
8秒前
静花水月完成签到,获得积分10
9秒前
youngneuron完成签到,获得积分10
9秒前
张有为发布了新的文献求助10
9秒前
9秒前
研友_nPoXoL完成签到,获得积分10
9秒前
甜美靖雁发布了新的文献求助10
10秒前
10秒前
10秒前
MOF@COF发布了新的文献求助10
11秒前
11秒前
鳗鱼如松完成签到,获得积分10
11秒前
11秒前
时尚半仙发布了新的文献求助10
11秒前
我是老大应助啊啊啊啊采纳,获得10
11秒前
一汪无前发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251565
求助须知:如何正确求助?哪些是违规求助? 4415674
关于积分的说明 13746733
捐赠科研通 4287400
什么是DOI,文献DOI怎么找? 2352416
邀请新用户注册赠送积分活动 1349253
关于科研通互助平台的介绍 1308750