Multifeature fusion action recognition based on key frames

计算机科学 人工智能 动作识别 关键帧 计算机视觉 加权 模式识别(心理学) 特征提取 合并(版本控制) 卷积神经网络 冗余(工程) 钥匙(锁) 帧(网络) 情报检索 放射科 操作系统 电信 医学 班级(哲学) 计算机安全
作者
Yuerong Zhao,Hongbo Guo,Ling Gao,Hai Wang,Jie Zheng,Kan Zhang,Zheng Yong
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (21) 被引量:5
标识
DOI:10.1002/cpe.6137
摘要

Summary As an important technology in computer vision, video‐based human action recognition has a great commercial value, which has attracted extensive attention in the field of computer vision and pattern recognition in both academia and industry. To date, there are a wide variety of applications of human action recognition, such as surveillance, robotics, health care, video searching, and human–computer interaction. However, there are many challenges involved in human action recognition in videos, such as cluttered backgrounds, occlusions, viewpoint variation, execution rate, and camera motion. However, data redundancy and single feature were largely limited the accuracy of human action recognition. In this article, adopting the key frame extraction and multifeature fusion techniques, a novel action recognition method was proposed, which can improve the recognition accuracy. The main works are as follows: 1) in order to solve the problem of data redundancy, a key frame extraction method based on node contribution weighting is proposed to extract video key frames; 2) different kinds of information flows are extracted from the obtained key frame sequences, and different convolutional neural networks are used to obtain corresponding classification results and merge, so as to better complement the information in different flows. Lastly, the experimental results show that our method improves the accuracy of action recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monere应助小博想毕业采纳,获得50
1秒前
LUMEN发布了新的文献求助10
2秒前
2秒前
2秒前
pipipi关注了科研通微信公众号
3秒前
赘婿应助008采纳,获得30
3秒前
昔时旧日完成签到,获得积分10
5秒前
CodeCraft应助宋温暖采纳,获得10
5秒前
5秒前
Jasper应助接好运采纳,获得10
5秒前
qy完成签到,获得积分10
6秒前
junhua发布了新的文献求助10
7秒前
7秒前
昊昊完成签到,获得积分10
8秒前
9秒前
9秒前
GD发布了新的文献求助20
10秒前
ff发布了新的文献求助10
10秒前
orixero应助wade采纳,获得10
10秒前
乐乐应助倪满分采纳,获得10
10秒前
Owen应助陈陈陈采纳,获得10
12秒前
陈醋塔塔完成签到,获得积分10
12秒前
12秒前
萧水白应助王秋婷采纳,获得10
13秒前
萧水白应助王秋婷采纳,获得10
13秒前
14秒前
monere应助遥感小虫采纳,获得10
14秒前
14秒前
NexusExplorer应助研友_LOoomL采纳,获得10
15秒前
16秒前
稳重傲儿完成签到 ,获得积分10
16秒前
昨夜書发布了新的文献求助10
16秒前
17秒前
南阳宋仲基完成签到,获得积分10
17秒前
儒雅的焦发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
王秋婷完成签到,获得积分10
21秒前
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267492
求助须知:如何正确求助?哪些是违规求助? 2906869
关于积分的说明 8339980
捐赠科研通 2577519
什么是DOI,文献DOI怎么找? 1401002
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633943