Trends in Deep Learning for Property-driven Drug Design

深度学习 生成语法 计算机科学 人工智能 药物发现 机器学习 杠杆(统计) 化学信息学 数据科学 生成模型 生物信息学 生物
作者
Jannis Born,Matteo Manica
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:28 (38): 7862-7886 被引量:22
标识
DOI:10.2174/0929867328666210729115728
摘要

It is more pressing than ever to reduce the time and costs for the development of lead compounds in the pharmaceutical industry. The co-occurrence of advances in high-throughput screening and the rise of deep learning (DL) have enabled the development of large-scale multimodal predictive models for virtual drug screening. Recently, deep generative models have emerged as a powerful tool to explore the chemical space and raise hopes to expedite the drug discovery process. Following this progress in chemocentric approaches for generative chemistry, the next challenge is to build multimodal conditional generative models that leverage disparate knowledge sources when mapping biochemical properties to target structures. Here, we call the community to bridge drug discovery more closely with systems biology when designing deep generative models. Complementing the plethora of reviews on the role of DL in chemoinformatics, we specifically focus on the interface of predictive and generative modelling for drug discovery. Through a systematic publication keyword search on PubMed and a selection of preprint servers (arXiv, biorXiv, chemRxiv, and medRxiv), we quantify trends in the field and find that molecular graphs and VAEs have become the most widely adopted molecular representations and architectures in generative models, respectively. We discuss progress on DL for toxicity, drug-target affinity, and drug sensitivity prediction and specifically focus on conditional molecular generative models that encompass multimodal prediction models. Moreover, we outline future prospects in the field and identify challenges such as the integration of deep learning systems into experimental workflows in a closed-loop manner or the adoption of federated machine learning techniques to overcome data sharing barriers. Other challenges include, but are not limited to interpretability in generative models, more sophisticated metrics for the evaluation of molecular generative models, and, following up on that, community-accepted benchmarks for both multimodal drug property prediction and property-driven molecular design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
Kir发布了新的文献求助10
1秒前
Z17应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
2秒前
lingchuan发布了新的文献求助10
2秒前
Z17应助科研通管家采纳,获得10
2秒前
dong应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
Z17应助科研通管家采纳,获得10
2秒前
Genius完成签到,获得积分10
3秒前
Zhaobin完成签到,获得积分10
4秒前
SciGPT应助读书的时候采纳,获得10
4秒前
Lee完成签到 ,获得积分10
5秒前
5秒前
5秒前
AX完成签到,获得积分10
6秒前
wudizhuzhu233发布了新的文献求助10
6秒前
Re2411发布了新的文献求助10
7秒前
lingchuan完成签到,获得积分20
7秒前
shasha完成签到,获得积分10
7秒前
8秒前
gezid完成签到 ,获得积分10
8秒前
科研小白发布了新的文献求助10
8秒前
核桃应助聪明的宛菡采纳,获得10
8秒前
隐形曼青应助清凉茶采纳,获得10
9秒前
<・)))><<应助淘宝叮咚采纳,获得10
10秒前
zzzz发布了新的文献求助10
12秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
王倩完成签到 ,获得积分10
16秒前
16秒前
默默灭绝完成签到 ,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024074
求助须知:如何正确求助?哪些是违规求助? 3564002
关于积分的说明 11344012
捐赠科研通 3295249
什么是DOI,文献DOI怎么找? 1815021
邀请新用户注册赠送积分活动 889641
科研通“疑难数据库(出版商)”最低求助积分说明 813091