Trends in Deep Learning for Property-driven Drug Design

深度学习 生成语法 计算机科学 人工智能 药物发现 机器学习 杠杆(统计) 化学信息学 数据科学 生成模型 生物信息学 生物
作者
Jannis Born,Matteo Manica
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:28 (38): 7862-7886 被引量:22
标识
DOI:10.2174/0929867328666210729115728
摘要

It is more pressing than ever to reduce the time and costs for the development of lead compounds in the pharmaceutical industry. The co-occurrence of advances in high-throughput screening and the rise of deep learning (DL) have enabled the development of large-scale multimodal predictive models for virtual drug screening. Recently, deep generative models have emerged as a powerful tool to explore the chemical space and raise hopes to expedite the drug discovery process. Following this progress in chemocentric approaches for generative chemistry, the next challenge is to build multimodal conditional generative models that leverage disparate knowledge sources when mapping biochemical properties to target structures. Here, we call the community to bridge drug discovery more closely with systems biology when designing deep generative models. Complementing the plethora of reviews on the role of DL in chemoinformatics, we specifically focus on the interface of predictive and generative modelling for drug discovery. Through a systematic publication keyword search on PubMed and a selection of preprint servers (arXiv, biorXiv, chemRxiv, and medRxiv), we quantify trends in the field and find that molecular graphs and VAEs have become the most widely adopted molecular representations and architectures in generative models, respectively. We discuss progress on DL for toxicity, drug-target affinity, and drug sensitivity prediction and specifically focus on conditional molecular generative models that encompass multimodal prediction models. Moreover, we outline future prospects in the field and identify challenges such as the integration of deep learning systems into experimental workflows in a closed-loop manner or the adoption of federated machine learning techniques to overcome data sharing barriers. Other challenges include, but are not limited to interpretability in generative models, more sophisticated metrics for the evaluation of molecular generative models, and, following up on that, community-accepted benchmarks for both multimodal drug property prediction and property-driven molecular design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YGTRECE完成签到,获得积分20
1秒前
要减肥的乐双完成签到 ,获得积分10
2秒前
ssskong发布了新的文献求助10
2秒前
HCLonely应助哼哼大王采纳,获得10
2秒前
XKINGLEE发布了新的文献求助10
3秒前
kuikichu完成签到,获得积分10
3秒前
镇痛蚊子发布了新的文献求助10
4秒前
4秒前
mkl完成签到,获得积分20
5秒前
5秒前
浅尝离白应助mount采纳,获得20
5秒前
浅尝离白应助mount采纳,获得20
5秒前
5秒前
6秒前
加菲不猫完成签到,获得积分10
6秒前
ssskong完成签到,获得积分10
8秒前
小犁牛完成签到 ,获得积分10
8秒前
无花果应助薛小飞采纳,获得10
8秒前
檀溪完成签到,获得积分10
8秒前
9秒前
9秒前
哼哼大王完成签到,获得积分10
9秒前
9秒前
小谢同学发布了新的文献求助10
10秒前
搜集达人应助可可杨采纳,获得10
11秒前
12秒前
tttt完成签到,获得积分20
12秒前
14秒前
田小姐发布了新的文献求助10
15秒前
XKINGLEE完成签到,获得积分10
15秒前
16秒前
16秒前
子车茗应助科研通管家采纳,获得20
18秒前
打打应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
vlots应助科研通管家采纳,获得30
19秒前
19秒前
杳鸢应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233820
求助须知:如何正确求助?哪些是违规求助? 2880284
关于积分的说明 8214616
捐赠科研通 2547734
什么是DOI,文献DOI怎么找? 1377175
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623197