A transfer Learning-Based LSTM strategy for imputing Large-Scale consecutive missing data and its application in a water quality prediction system

计算机科学 缺少数据 水质 插补(统计学) 机器学习 灵活性(工程) 人工智能 学习迁移 资源(消歧) 深度学习 水资源 数据挖掘 比例(比率) 统计 数学 量子力学 生物 计算机网络 物理 生态学
作者
Chen Zeng,Huan Xu,Peng Jiang,Shanen Yu,Guang Lin,Igor Bychkov,Alexei E. Hmelnov,Г. М. Ружников,Ning Zhu,Zhen Liu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:602: 126573-126573 被引量:81
标识
DOI:10.1016/j.jhydrol.2021.126573
摘要

In recent years, water quality monitoring has been crucial to improve water resource protection and management. Under the relevant laws and regulations, environmental protection department agencies monitor lakes, streams, rivers, and other types of water bodies to assess water quality conditions. The valid and high-quality data generated from these monitoring activities help water resource managers understand the existing pollution situations, energy consumption problems and pollution control needs. However, there are inevitably many problems with water quality data in the real world due to human mistakes or system failures. One of the most frequently occurring issues is missing data. Although most existing studies have explored classic statistical methods or emerging machine/deep learning methods to fill gaps in data, these methods are not suitable for large-scale consecutive missing data problems. To address this issue, this paper proposes a novel algorithm called TrAdaBoost-LSTM, which integrates state-of-the-art deep learning theory through long short-term memory (LSTM) and instance-based transfer learning through TrAdaBoost. This model inherits the full advantages of the LSTM model and transfer learning technique, namely the powerful ability to capture the long-term dependencies among time series and the flexibility of leveraging the related knowledge from complete datasets to fill in large-scale consecutive missing data. A case study involving Dissolved Oxygen concentrations obtained from water quality monitoring stations is conducted to validate the effectiveness and superiority of the proposed method. The results show that the proposed TrAdaBoost-LSTM model not only improves the imputation accuracy by 15%~25% compared with that of alternative models based on the obtained performance indicators, but also provides potential ideas for similar future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋宋完成签到 ,获得积分10
1秒前
Owen应助hebhm采纳,获得10
5秒前
6秒前
清安发布了新的文献求助10
6秒前
梵高的向日葵完成签到 ,获得积分10
7秒前
8秒前
科研通AI5应助ll采纳,获得10
12秒前
hjc641发布了新的文献求助10
12秒前
Holland应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
小马过河应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
16秒前
Eric完成签到,获得积分10
17秒前
王月帆完成签到,获得积分10
17秒前
19秒前
20秒前
21秒前
hebhm发布了新的文献求助10
21秒前
22秒前
Owen应助老阳采纳,获得10
23秒前
善学以致用应助王月帆采纳,获得10
24秒前
24秒前
安生完成签到,获得积分10
25秒前
Swindler发布了新的文献求助10
25秒前
科研通AI5应助少林一只蛋采纳,获得10
27秒前
zzz发布了新的文献求助10
27秒前
27秒前
ll发布了新的文献求助10
28秒前
隔壁海绵宝宝完成签到,获得积分10
30秒前
充电宝应助Michelle采纳,获得10
30秒前
31秒前
黄晃晃发布了新的文献求助10
31秒前
Ki_Ayasato发布了新的文献求助10
31秒前
酷炫的幻丝完成签到 ,获得积分10
32秒前
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975