土壤碳
环境科学
高原(数学)
氮气
生态系统
碳纤维
土壤水分
环境化学
沉积(地质)
总有机碳
化学
土壤科学
自行车
生态学
地质学
地貌学
林业
生物
沉积物
地理
数学分析
复合数
复合材料
有机化学
材料科学
数学
作者
Jiannan Xiao,Shikui Dong,Zhenzhen Zhao,Yuhui Han,Shuai Li,Hao Shen,Chengxiang Ding
标识
DOI:10.1016/j.ecoleng.2021.106348
摘要
Abstract The Qinghai-Tibet Plateau (QTP) is experiencing increasing nitrogen (N) deposition, which may have great impacts on the physical, chemical, and biological factors that determine the stabilization of soil organic carbon (SOC). However, few studies have been conducted to quantify the relative contributions of these factors to SOC stabilization at various N addition levels in alpine habitats. We established a N manipulation experiment from 2015 to 2016 in an alpine meadow on the QTP to examine the impacts of N addition gradients on SOC stabilization under different scenarios of N deposition including 8, 24, 40, 56, and 72 kg N ha−1 yr−1. Using solid-state 13C NMR spectroscopy, we assessed the changes in the chemical composition of SOC. We measured soil aggregate size fractions, iron ions, soil microbes, and soil chemicals to investigate their contributions to SOC stabilization. We found that there were response thresholds of SOC to N addition in this alpine meadow on the QTP. The critical level of N addition for the change of SOC was close to 16 kg N ha−1 yr−1 plus the natural atmospheric N deposition (approximately 8 kg N ha−1 yr−1). N addition affected SOC stabilization in this alpine meadow mainly by affecting soil aggregates and soil microbes. These results of this study suggest that an exogenous N input lower than the critical load is beneficial for C sequestration in this alpine meadow on the QTP. This is potentially important for understanding the influences of atmospheric N deposition on soil properties, with subsequent effects on SOC stabilization on the alpine meadow of QTP and similar fragile ecosystems worldwide.
科研通智能强力驱动
Strongly Powered by AbleSci AI