A Bionic Optimization Technique with Cockroach Biological Behavior

计算机科学 数学优化 蟑螂 集合(抽象数据类型) 计算 人口 最优化问题 比例(比率) 优化算法 算法 数学 地理 生态学 程序设计语言 人口学 社会学 生物 地图学
作者
Cheng Le,Chang Lyu,Song Yanhong,Wang Hai-bo,XU Yihan,Yuetang Bian
出处
期刊:Chinese Journal of Electronics [Institution of Electrical Engineers]
卷期号:30 (4): 644-651
标识
DOI:10.1049/cje.2021.05.006
摘要

Many practical engineering problems can be abstracted as corresponding function optimization problems. During the last few decades, many bionic algorithms have been proposed for this problem. However, when optimizing for large scale problems, such as 1000 dimensions, many existing search techniques may no longer perform well. Inspired by the social model of cockroaches, this paper presents a novel search technique called Cooperation cockroach colony optimization (CCCO). In the CCCO algorithm, two kinds of special biological behavior of cockroach, wall-following and nest-leaving, are simulated and the whole population is divided into wall-following and nest-leaving populations. By the collaboration of the two populations, CCCO accomplishes the computation of global optimization. The crucial parameters of CCCO are set by the self-adaptive method. Moreover, a discussion on group model design is provided in this paper. The CCCO algorithm is evaluated with shifted test functions (1000 dimensions). Three state-of-the-art cockroach-inspired algorithms are used for the comparative experiments. Furthermore, CCCO is applied to a real-world optimization problem concerning spread spectrum radar poly-phase. Experiment results show that the CCCO algorithm can be applied to optimize large-scale problems with the good performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
怡然花卷完成签到,获得积分20
1秒前
老lili完成签到,获得积分10
1秒前
笑笑丶不爱笑完成签到,获得积分10
2秒前
2秒前
大本完成签到,获得积分10
3秒前
ylf完成签到,获得积分10
3秒前
3秒前
Oil完成签到,获得积分10
3秒前
3秒前
张姣姣完成签到,获得积分10
4秒前
xiyueQAQ完成签到,获得积分10
4秒前
5秒前
5秒前
英勇冬瓜完成签到,获得积分10
5秒前
5秒前
5秒前
打打应助DrLin采纳,获得10
5秒前
怡然花卷发布了新的文献求助10
6秒前
6秒前
葡萄小伊ovo完成签到 ,获得积分10
6秒前
6秒前
呆萌菲音发布了新的文献求助10
6秒前
啦啦啦123发布了新的文献求助10
6秒前
7秒前
深情安青应助yu采纳,获得10
7秒前
Zenobia完成签到,获得积分10
7秒前
在水一方应助曾无忧采纳,获得10
7秒前
xiaoxiaoxiao完成签到,获得积分10
7秒前
笨笨山芙完成签到 ,获得积分10
7秒前
8秒前
李爱国应助联合工程采纳,获得10
8秒前
8秒前
顾矜应助Lze采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
李爱国应助duoduo采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017