Explainable artificial intelligence to predict the risk of side-specific extraprostatic extension in pre-prostatectomy patients

接收机工作特性 前列腺切除术 逻辑回归 医学 队列 人工智能 基线(sea) 内科学 计算机科学 前列腺癌 癌症 海洋学 地质学
作者
Jethro C.C. Kwong,Adree Khondker,Christopher Tran,Emily J. Evans,Adrian I. Cozma,Ashkan Javidan,Amna Ali,Munir Jamal,Timothy G. Short,Frank Papanikolaou,John R. Srigley,Benjamin Fine,Andrew Feifer
出处
期刊:Canadian Urological Association journal [Canadian Urological Association Journal]
卷期号:16 (6) 被引量:14
标识
DOI:10.5489/cuaj.7473
摘要

We aimed to develop an explainable machine learning (ML) model to predict side-specific extraprostatic extension (ssEPE) to identify patients who can safely undergo nerve-sparing radical prostatectomy using preoperative clinicopathological variables.A retrospective sample of clinicopathological data from 900 prostatic lobes at our institution was used as the training cohort. Primary outcome was the presence of ssEPE. The baseline model for comparison had the highest performance out of current biopsy-derived predictive models for ssEPE. A separate logistic regression (LR) model was built using the same variables as the ML model. All models were externally validated using a testing cohort of 122 lobes from another institution. Models were assessed by area under receiver-operating-characteristic curve (AUROC), precision-recall curve (AUPRC), calibration, and decision curve analysis. Model predictions were explained using SHapley Additive exPlanations. This tool was deployed as a publicly available web application.Incidence of ssEPE in the training and testing cohorts were 30.7 and 41.8%, respectively. The ML model achieved AUROC 0.81 (LR 0.78, baseline 0.74) and AUPRC 0.69 (LR 0.64, baseline 0.59) on the training cohort. On the testing cohort, the ML model achieved AUROC 0.81 (LR 0.76, baseline 0.75) and AUPRC 0.78 (LR 0.75, baseline 0.70). The ML model was explainable, well-calibrated, and achieved the highest net benefit for clinically relevant cutoffs of 10-30%.We developed a user-friendly application that enables physicians without prior ML experience to assess ssEPE risk and understand factors driving these predictions to aid surgical planning and patient counselling (https://share.streamlit.io/jcckwong/ssepe/main/ssEPE_V2.py).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hugh发布了新的文献求助10
2秒前
3秒前
简单的红酒完成签到 ,获得积分10
3秒前
专注雁桃发布了新的文献求助10
4秒前
4秒前
科研小白应助灵巧的蹇采纳,获得10
4秒前
5秒前
任乘风发布了新的文献求助10
5秒前
7秒前
xiaofei666应助鲤鱼灵阳采纳,获得20
7秒前
77seven完成签到,获得积分10
7秒前
科研通AI2S应助追寻的纸鹤采纳,获得10
8秒前
马户发布了新的文献求助10
8秒前
dahuihui发布了新的文献求助10
9秒前
ZCP发布了新的文献求助10
11秒前
斯文败类应助专注雁桃采纳,获得10
12秒前
15秒前
隐形曼青应助MM_123采纳,获得10
16秒前
17秒前
hugh完成签到,获得积分10
17秒前
时尚的冷玉完成签到,获得积分10
18秒前
任乘风完成签到,获得积分10
19秒前
科研通AI2S应助开心采纳,获得10
22秒前
小野狼完成签到,获得积分10
24秒前
26秒前
Akim应助一梦倾城采纳,获得10
27秒前
28秒前
丰富的乐儿完成签到,获得积分10
29秒前
30秒前
msd2phd完成签到,获得积分10
30秒前
32秒前
32秒前
大哼哼发布了新的文献求助10
32秒前
jijijibibibi完成签到,获得积分10
34秒前
DyLan完成签到,获得积分10
35秒前
123完成签到,获得积分20
36秒前
啊呜发布了新的文献求助10
37秒前
原同学发布了新的文献求助10
38秒前
娜娜完成签到 ,获得积分10
38秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279031
求助须知:如何正确求助?哪些是违规求助? 2917363
关于积分的说明 8386033
捐赠科研通 2588221
什么是DOI,文献DOI怎么找? 1410032
科研通“疑难数据库(出版商)”最低求助积分说明 657585
邀请新用户注册赠送积分活动 638651