Explainable artificial intelligence to predict the risk of side-specific extraprostatic extension in pre-prostatectomy patients

接收机工作特性 前列腺切除术 逻辑回归 医学 队列 人工智能 基线(sea) 内科学 计算机科学 前列腺癌 癌症 海洋学 地质学
作者
Jethro C.C. Kwong,Adree Khondker,Christopher Tran,Emily J. Evans,Adrian I. Cozma,Ashkan Javidan,Amna Ali,Munir Jamal,Timothy G. Short,Frank Papanikolaou,John R. Srigley,Benjamin Fine,Andrew Feifer
出处
期刊:Canadian Urological Association journal [Canadian Urological Association Journal]
卷期号:16 (6) 被引量:14
标识
DOI:10.5489/cuaj.7473
摘要

We aimed to develop an explainable machine learning (ML) model to predict side-specific extraprostatic extension (ssEPE) to identify patients who can safely undergo nerve-sparing radical prostatectomy using preoperative clinicopathological variables.A retrospective sample of clinicopathological data from 900 prostatic lobes at our institution was used as the training cohort. Primary outcome was the presence of ssEPE. The baseline model for comparison had the highest performance out of current biopsy-derived predictive models for ssEPE. A separate logistic regression (LR) model was built using the same variables as the ML model. All models were externally validated using a testing cohort of 122 lobes from another institution. Models were assessed by area under receiver-operating-characteristic curve (AUROC), precision-recall curve (AUPRC), calibration, and decision curve analysis. Model predictions were explained using SHapley Additive exPlanations. This tool was deployed as a publicly available web application.Incidence of ssEPE in the training and testing cohorts were 30.7 and 41.8%, respectively. The ML model achieved AUROC 0.81 (LR 0.78, baseline 0.74) and AUPRC 0.69 (LR 0.64, baseline 0.59) on the training cohort. On the testing cohort, the ML model achieved AUROC 0.81 (LR 0.76, baseline 0.75) and AUPRC 0.78 (LR 0.75, baseline 0.70). The ML model was explainable, well-calibrated, and achieved the highest net benefit for clinically relevant cutoffs of 10-30%.We developed a user-friendly application that enables physicians without prior ML experience to assess ssEPE risk and understand factors driving these predictions to aid surgical planning and patient counselling (https://share.streamlit.io/jcckwong/ssepe/main/ssEPE_V2.py).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七给七七的求助进行了留言
刚刚
1秒前
1秒前
Hello应助冷静的平安采纳,获得10
1秒前
FKVB_完成签到 ,获得积分10
2秒前
饼饼完成签到,获得积分10
2秒前
天天快乐应助木木采纳,获得10
2秒前
艺玲发布了新的文献求助10
2秒前
大气飞丹发布了新的文献求助10
2秒前
丫丫完成签到,获得积分10
3秒前
科研通AI2S应助觅桃乌龙采纳,获得10
3秒前
耿强完成签到,获得积分10
3秒前
wanci应助dd采纳,获得10
4秒前
汉堡包应助cuihl123采纳,获得10
4秒前
李浓完成签到,获得积分10
4秒前
DreamMaker发布了新的文献求助10
4秒前
mao12wang完成签到,获得积分10
5秒前
5秒前
bdvdsrwteges发布了新的文献求助10
6秒前
如约而至发布了新的文献求助20
6秒前
纯真的莫茗完成签到,获得积分10
6秒前
彭于晏应助超11采纳,获得10
7秒前
7秒前
gavincsu发布了新的文献求助10
7秒前
KSGGS给KSGGS的求助进行了留言
7秒前
flow驳回了Aria应助
7秒前
lixiunan完成签到,获得积分10
7秒前
7秒前
dildil发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
边瑞明完成签到,获得积分10
10秒前
Wang发布了新的文献求助10
11秒前
Jenny应助拼搏思卉采纳,获得10
11秒前
11秒前
神勇的雅香应助不喝可乐采纳,获得10
11秒前
清脆的白开水完成签到,获得积分10
11秒前
Hello应助善良过客采纳,获得10
11秒前
现实的曼荷完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759