人工智能
计算机科学
构造(python库)
人工智能应用
领域(数学分析)
透明度(行为)
机器学习
领域知识
人类智力
知识管理
数据科学
数学
计算机安全
数学分析
程序设计语言
作者
Marina Johnson,Abdullah Albizri,Antoine Harfouche,Samuel Fosso Wamba
标识
DOI:10.1016/j.ijinfomgt.2022.102479
摘要
Artificial intelligence (AI) has been gaining significant attention in various fields to reduce costs, increase revenue, and improve customer satisfaction. AI can be particularly beneficial in enhancing decision-making processes for complex and ill-structured problems that lack transparency and have unclear goals. Most AI algorithms require labeled datasets to learn the problem characteristics, draw decision boundaries, and generalize. However, most datasets collected to solve complex and ill-structured problems do not have labels. Additionally, most AI algorithms are opaque and not easily interpretable, making it hard for decision-makers to obtain model insights for developing effective solution strategies. To this end, we examine existing AI paradigms, mainly symbolic AI (SAI) guided by human domain knowledge and data-driven AI (DAI) guided by data. We propose an approach called informed AI (IAI) by integrating human domain knowledge into AI to develop effective and reliable data labeling and model explainability processes. We demonstrate and validate the use of IAI by applying it to a social media dataset comprised of conversations between customers and customer support agents to construct a solution – IAI defect explorer (I-AIDE). I-AIDE is utilized to identify product defects and extract the voice of customers to help managers make decisions to improve quality and enhance customer satisfaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI