Application of deep learning image reconstruction in low-dose chest CT scan

医学 图像质量 图像噪声 核医学 迭代重建 辐射剂量 噪音(视频) 放射科 图像(数学) 人工智能 计算机科学
作者
Huang Wang,Lulu Li,Jin Shang,Jian Song,Bin Liu
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1133) 被引量:9
标识
DOI:10.1259/bjr.20210380
摘要

Deep learning image reconstruction (DLIR) is a new reconstruction method for maintaining image quality at reduced radiation dose. The purpose of this study was to compare image quality of reduced-dose DLIR images with the standard-dose adaptive statistical iterative reconstruction (ASIR-V) images in chest CT.Our prospective study included 48 adult patients (30 women and 18 men, mean age ±SD, 49.8 ± 14.3 years) who underwent both the standard-dose CT (SDCT) and low-dose CT (LDCT) on a GE Revolution CT scanner. All patients gave written informed consent. All scans were reconstructed with ASIR-V40%. Additionally, LDCT scans were reconstructed with DLIR with high-setting (DLIR-H) and medium-setting (DLIR-M). Image noise and contrast-noise-ratio (CNR) of thoracic aorta with different reconstruction modes were measured and compared.LDCT reduced radiation dose by 96% compared with SDCT (CTDIvol: 0.54mGy vs 12.46mGy). In LDCT, DLIR significantly reduced image noise compared with the state-of-the-art ASIR-V40% with DLIR-H provided the lowest image noise and highest image quality score. In addition, the image noise, CNR of aorta and overall image quality of the low-dose DLIR-H images did not have significant difference compared with the SDCT ASIR-V40% images (all p > 0.05).DLIR significantly reduces image noise in LDCT chest scans and provides similar image quality as the SDCT ASIR-V images at 4% of the radiation dose.DLIR uses high-quality FBP data to train deep neural networks to learn how to distinguish between signal and noise, and effectively suppresses noise without affecting anatomical and pathological structures. It opens a new era of CT image reconstruction. DLIR significantly reduces image noise and improves image quality compared with ASIR-V40% under same radiation dose condition. DLIR-H achieves similar image quality at 4% radiation dose as ASIR-V40% at standard-dose level in non-contrast chest CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的冰珍完成签到,获得积分10
1秒前
可爱的函函应助书记采纳,获得10
1秒前
昏睡的以寒完成签到,获得积分10
2秒前
凉雨渲发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
JerryZ发布了新的文献求助10
5秒前
雇凶暗杀蛋饺完成签到,获得积分10
7秒前
7秒前
Libra发布了新的文献求助10
8秒前
凉雨渲完成签到,获得积分10
9秒前
可爱的函函应助悦悦采纳,获得10
9秒前
周伟杰完成签到,获得积分10
9秒前
情怀应助书记采纳,获得10
14秒前
科研通AI6应助paws采纳,获得10
15秒前
16秒前
柔弱的凝丝关注了科研通微信公众号
17秒前
zky发布了新的文献求助10
17秒前
17秒前
Orange应助kuny采纳,获得10
18秒前
18秒前
浮游应助东山德克士骑士采纳,获得10
19秒前
陈妙莹完成签到,获得积分20
19秒前
招财鱼完成签到 ,获得积分10
20秒前
丘比特应助竹沐鱼采纳,获得10
21秒前
NexusExplorer应助笨小孩采纳,获得10
23秒前
陈妙莹发布了新的文献求助10
23秒前
oiio完成签到,获得积分10
23秒前
MengYuan完成签到,获得积分10
24秒前
24秒前
cyanide关注了科研通微信公众号
27秒前
高高向日葵完成签到 ,获得积分10
28秒前
28秒前
29秒前
JerryZ发布了新的文献求助10
29秒前
30秒前
30秒前
竹沐鱼完成签到,获得积分20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420777
求助须知:如何正确求助?哪些是违规求助? 4535755
关于积分的说明 14151514
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442416
邀请新用户注册赠送积分活动 1433847
关于科研通互助平台的介绍 1410975