Application of deep learning image reconstruction in low-dose chest CT scan

医学 图像质量 图像噪声 核医学 迭代重建 辐射剂量 噪音(视频) 放射科 图像(数学) 人工智能 计算机科学
作者
Huang Wang,Lulu Li,Jin Shang,Jian Song,Bin Liu
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1133) 被引量:9
标识
DOI:10.1259/bjr.20210380
摘要

Deep learning image reconstruction (DLIR) is a new reconstruction method for maintaining image quality at reduced radiation dose. The purpose of this study was to compare image quality of reduced-dose DLIR images with the standard-dose adaptive statistical iterative reconstruction (ASIR-V) images in chest CT.Our prospective study included 48 adult patients (30 women and 18 men, mean age ±SD, 49.8 ± 14.3 years) who underwent both the standard-dose CT (SDCT) and low-dose CT (LDCT) on a GE Revolution CT scanner. All patients gave written informed consent. All scans were reconstructed with ASIR-V40%. Additionally, LDCT scans were reconstructed with DLIR with high-setting (DLIR-H) and medium-setting (DLIR-M). Image noise and contrast-noise-ratio (CNR) of thoracic aorta with different reconstruction modes were measured and compared.LDCT reduced radiation dose by 96% compared with SDCT (CTDIvol: 0.54mGy vs 12.46mGy). In LDCT, DLIR significantly reduced image noise compared with the state-of-the-art ASIR-V40% with DLIR-H provided the lowest image noise and highest image quality score. In addition, the image noise, CNR of aorta and overall image quality of the low-dose DLIR-H images did not have significant difference compared with the SDCT ASIR-V40% images (all p > 0.05).DLIR significantly reduces image noise in LDCT chest scans and provides similar image quality as the SDCT ASIR-V images at 4% of the radiation dose.DLIR uses high-quality FBP data to train deep neural networks to learn how to distinguish between signal and noise, and effectively suppresses noise without affecting anatomical and pathological structures. It opens a new era of CT image reconstruction. DLIR significantly reduces image noise and improves image quality compared with ASIR-V40% under same radiation dose condition. DLIR-H achieves similar image quality at 4% radiation dose as ASIR-V40% at standard-dose level in non-contrast chest CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助kevin1018采纳,获得10
1秒前
林晚停应助枫丶采纳,获得10
1秒前
一一得一完成签到,获得积分10
1秒前
keyan完成签到,获得积分10
1秒前
2秒前
4秒前
小雕发布了新的文献求助10
4秒前
4秒前
魔幻的从丹完成签到 ,获得积分10
5秒前
yiyi完成签到,获得积分10
5秒前
YAO完成签到 ,获得积分10
5秒前
科研通AI5应助王彬采纳,获得10
6秒前
huangnvshi发布了新的文献求助10
6秒前
6秒前
侃侃完成签到,获得积分10
6秒前
传奇3应助欣辰采纳,获得10
7秒前
戴维少尉发布了新的文献求助10
8秒前
南宫秃完成签到,获得积分10
8秒前
ffw1完成签到,获得积分10
9秒前
xs发布了新的文献求助10
9秒前
卢大赛完成签到 ,获得积分10
9秒前
打打应助keysoz采纳,获得10
10秒前
归尘应助壮观溪流采纳,获得10
10秒前
daypoi发布了新的文献求助10
11秒前
英吉利25发布了新的文献求助10
11秒前
111完成签到,获得积分20
14秒前
王永明发布了新的文献求助10
15秒前
15秒前
丘比特应助merryorange采纳,获得10
16秒前
乐意完成签到,获得积分10
17秒前
斯文败类应助朱柯虹采纳,获得10
17秒前
0409hhh完成签到,获得积分10
21秒前
喂喂喂魏不饱完成签到,获得积分10
21秒前
KirinLee麒麟完成签到,获得积分10
21秒前
步步完成签到 ,获得积分10
21秒前
长情的语风完成签到 ,获得积分10
22秒前
科研通AI5应助皮卡丘比特采纳,获得10
23秒前
SaSa完成签到,获得积分10
24秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213850
求助须知:如何正确求助?哪些是违规求助? 4389532
关于积分的说明 13667242
捐赠科研通 4250710
什么是DOI,文献DOI怎么找? 2332178
邀请新用户注册赠送积分活动 1329835
关于科研通互助平台的介绍 1283481