Application of deep learning image reconstruction in low-dose chest CT scan

医学 图像质量 图像噪声 核医学 迭代重建 辐射剂量 噪音(视频) 放射科 图像(数学) 人工智能 计算机科学
作者
Huang Wang,Lulu Li,Jin Shang,Jian Song,Bin Liu
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1133) 被引量:9
标识
DOI:10.1259/bjr.20210380
摘要

Deep learning image reconstruction (DLIR) is a new reconstruction method for maintaining image quality at reduced radiation dose. The purpose of this study was to compare image quality of reduced-dose DLIR images with the standard-dose adaptive statistical iterative reconstruction (ASIR-V) images in chest CT.Our prospective study included 48 adult patients (30 women and 18 men, mean age ±SD, 49.8 ± 14.3 years) who underwent both the standard-dose CT (SDCT) and low-dose CT (LDCT) on a GE Revolution CT scanner. All patients gave written informed consent. All scans were reconstructed with ASIR-V40%. Additionally, LDCT scans were reconstructed with DLIR with high-setting (DLIR-H) and medium-setting (DLIR-M). Image noise and contrast-noise-ratio (CNR) of thoracic aorta with different reconstruction modes were measured and compared.LDCT reduced radiation dose by 96% compared with SDCT (CTDIvol: 0.54mGy vs 12.46mGy). In LDCT, DLIR significantly reduced image noise compared with the state-of-the-art ASIR-V40% with DLIR-H provided the lowest image noise and highest image quality score. In addition, the image noise, CNR of aorta and overall image quality of the low-dose DLIR-H images did not have significant difference compared with the SDCT ASIR-V40% images (all p > 0.05).DLIR significantly reduces image noise in LDCT chest scans and provides similar image quality as the SDCT ASIR-V images at 4% of the radiation dose.DLIR uses high-quality FBP data to train deep neural networks to learn how to distinguish between signal and noise, and effectively suppresses noise without affecting anatomical and pathological structures. It opens a new era of CT image reconstruction. DLIR significantly reduces image noise and improves image quality compared with ASIR-V40% under same radiation dose condition. DLIR-H achieves similar image quality at 4% radiation dose as ASIR-V40% at standard-dose level in non-contrast chest CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
wushuwen发布了新的文献求助10
1秒前
2秒前
xuan完成签到,获得积分10
3秒前
完美世界应助段一帆采纳,获得10
5秒前
少敏敏完成签到,获得积分10
7秒前
may发布了新的文献求助10
7秒前
12秒前
14秒前
兜兜关注了科研通微信公众号
14秒前
wbh完成签到,获得积分10
15秒前
太牛的GGB发布了新的文献求助10
15秒前
wbh发布了新的文献求助10
17秒前
乐乐应助may采纳,获得10
17秒前
顺利的梦菲完成签到 ,获得积分10
18秒前
777完成签到 ,获得积分10
18秒前
上官若男应助忧郁盼夏采纳,获得10
19秒前
冷艳的姿发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
25秒前
26秒前
时光发布了新的文献求助10
27秒前
28秒前
1111完成签到,获得积分10
29秒前
张怡博发布了新的文献求助10
30秒前
周em12_发布了新的文献求助10
31秒前
31秒前
积极鱼完成签到 ,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173