亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of deep learning image reconstruction in low-dose chest CT scan

医学 图像质量 图像噪声 核医学 迭代重建 辐射剂量 噪音(视频) 放射科 图像(数学) 人工智能 计算机科学
作者
Huang Wang,Lulu Li,Jin Shang,Jian Song,Bin Liu
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1133) 被引量:9
标识
DOI:10.1259/bjr.20210380
摘要

Deep learning image reconstruction (DLIR) is a new reconstruction method for maintaining image quality at reduced radiation dose. The purpose of this study was to compare image quality of reduced-dose DLIR images with the standard-dose adaptive statistical iterative reconstruction (ASIR-V) images in chest CT.Our prospective study included 48 adult patients (30 women and 18 men, mean age ±SD, 49.8 ± 14.3 years) who underwent both the standard-dose CT (SDCT) and low-dose CT (LDCT) on a GE Revolution CT scanner. All patients gave written informed consent. All scans were reconstructed with ASIR-V40%. Additionally, LDCT scans were reconstructed with DLIR with high-setting (DLIR-H) and medium-setting (DLIR-M). Image noise and contrast-noise-ratio (CNR) of thoracic aorta with different reconstruction modes were measured and compared.LDCT reduced radiation dose by 96% compared with SDCT (CTDIvol: 0.54mGy vs 12.46mGy). In LDCT, DLIR significantly reduced image noise compared with the state-of-the-art ASIR-V40% with DLIR-H provided the lowest image noise and highest image quality score. In addition, the image noise, CNR of aorta and overall image quality of the low-dose DLIR-H images did not have significant difference compared with the SDCT ASIR-V40% images (all p > 0.05).DLIR significantly reduces image noise in LDCT chest scans and provides similar image quality as the SDCT ASIR-V images at 4% of the radiation dose.DLIR uses high-quality FBP data to train deep neural networks to learn how to distinguish between signal and noise, and effectively suppresses noise without affecting anatomical and pathological structures. It opens a new era of CT image reconstruction. DLIR significantly reduces image noise and improves image quality compared with ASIR-V40% under same radiation dose condition. DLIR-H achieves similar image quality at 4% radiation dose as ASIR-V40% at standard-dose level in non-contrast chest CT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
5秒前
7秒前
11秒前
28秒前
光轮2000发布了新的文献求助10
33秒前
123123完成签到 ,获得积分10
34秒前
玄光君完成签到,获得积分10
43秒前
传奇3应助光轮2000采纳,获得10
46秒前
123完成签到 ,获得积分10
47秒前
asd1576562308完成签到 ,获得积分10
49秒前
nanxing发布了新的文献求助10
57秒前
lcw1998发布了新的文献求助10
1分钟前
1分钟前
Yangpc发布了新的文献求助10
1分钟前
1分钟前
光轮2000发布了新的文献求助10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
科研通AI2S应助光轮2000采纳,获得10
1分钟前
1分钟前
orixero应助Wjh123456采纳,获得10
1分钟前
玄光君发布了新的文献求助10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
今后应助TwinQ采纳,获得10
1分钟前
2分钟前
Pauline完成签到 ,获得积分10
2分钟前
Wjh123456发布了新的文献求助10
2分钟前
2分钟前
TwinQ发布了新的文献求助10
2分钟前
2分钟前
日新又新完成签到,获得积分10
2分钟前
Charles完成签到,获得积分10
2分钟前
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
2分钟前
任性迎南发布了新的文献求助10
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
ding应助任性迎南采纳,获得10
3分钟前
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
程晓研完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688979
什么是DOI,文献DOI怎么找? 2540586
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594