Churn prediction in digital game-based learning using data mining techniques: Logistic regression, decision tree, and random forest

随机森林 计算机科学 超参数 逻辑回归 决策树 机器学习 特征(语言学) 树(集合论) 工作(物理) 回归 人工智能 统计 数学 工程类 机械工程 数学分析 哲学 语言学
作者
Mai Kiguchi,Waddah Saeed,Imran Medi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:118: 108491-108491 被引量:30
标识
DOI:10.1016/j.asoc.2022.108491
摘要

Educational Technology (EdTech) is an industry that integrates education and technology advances. Digital game-based learning (DGBL) is one of the narrowed-down categories of EdTech. One of the common issues in the EdTech market is the higher churn rate. However, because the DGBL market is still in the early stage, few studies related to marketing perspectives exist. Besides, the approach in education or online gaming industries can be only partially applicable to DGBL. A popular approach for addressing a higher churn rate is churn prediction. By using a dataset from a Japanese company providing DGBL services, this work proposes an approach for the combination of defining churn and churn prediction for DGBL. This work has three objectives. First, determining churn in DGBL by comparing the recency and the addition of average and two standard deviations of user inactive time. Second, clarifying the churn rate of the Japanese service, which became evident as 56.77% by using the newly created churn definition. Third, developing a churn prediction model by comparing logistic regression (LR), decision tree, and random forest models. Feature selection, dataset split ratio comparison, and hyperparameter tuning were conducted to achieve better predictions. Based on the results, LR scored the highest AUC of 0.9225 and an F1-score of 0.9194. These results are on the higher side comparing with the past churn prediction studies in online gaming and education industries. As a consequence, the results indicate the effectiveness of the proposed approach for churn determination and prediction in DGBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMZ完成签到,获得积分10
刚刚
香蕉觅云应助胡萝卜采纳,获得10
1秒前
Patrick完成签到,获得积分10
1秒前
2秒前
枝头树上的布谷鸟完成签到 ,获得积分10
3秒前
siji完成签到,获得积分10
3秒前
酷波er应助冰淇淋采纳,获得10
4秒前
科研通AI2S应助zzzy采纳,获得10
5秒前
lin完成签到 ,获得积分10
6秒前
Lewis完成签到,获得积分20
6秒前
6秒前
7秒前
立羽完成签到 ,获得积分10
7秒前
alixy完成签到,获得积分10
7秒前
8秒前
8秒前
小李儿发布了新的文献求助10
8秒前
超级小张完成签到,获得积分20
9秒前
9秒前
波安班完成签到,获得积分10
9秒前
Lewis发布了新的文献求助20
10秒前
传奇3应助迷路的煎蛋采纳,获得10
11秒前
congcong发布了新的文献求助10
11秒前
12秒前
蜂蜜完成签到,获得积分10
12秒前
蓝桉完成签到 ,获得积分10
13秒前
张景灿完成签到,获得积分10
13秒前
蘇q完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
nous完成签到,获得积分10
16秒前
11完成签到,获得积分10
17秒前
西西完成签到,获得积分10
17秒前
17秒前
Wang_ZiMo发布了新的文献求助10
18秒前
海绵宝宝的做饭铲完成签到,获得积分10
18秒前
18秒前
yuuka发布了新的文献求助10
19秒前
Wang驳回了李健应助
19秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188