Churn prediction in digital game-based learning using data mining techniques: Logistic regression, decision tree, and random forest

随机森林 计算机科学 超参数 逻辑回归 决策树 机器学习 特征(语言学) 树(集合论) 工作(物理) 回归 人工智能 统计 数学 工程类 机械工程 数学分析 哲学 语言学
作者
Mai Kiguchi,Waddah Saeed,Imran Medi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:118: 108491-108491 被引量:30
标识
DOI:10.1016/j.asoc.2022.108491
摘要

Educational Technology (EdTech) is an industry that integrates education and technology advances. Digital game-based learning (DGBL) is one of the narrowed-down categories of EdTech. One of the common issues in the EdTech market is the higher churn rate. However, because the DGBL market is still in the early stage, few studies related to marketing perspectives exist. Besides, the approach in education or online gaming industries can be only partially applicable to DGBL. A popular approach for addressing a higher churn rate is churn prediction. By using a dataset from a Japanese company providing DGBL services, this work proposes an approach for the combination of defining churn and churn prediction for DGBL. This work has three objectives. First, determining churn in DGBL by comparing the recency and the addition of average and two standard deviations of user inactive time. Second, clarifying the churn rate of the Japanese service, which became evident as 56.77% by using the newly created churn definition. Third, developing a churn prediction model by comparing logistic regression (LR), decision tree, and random forest models. Feature selection, dataset split ratio comparison, and hyperparameter tuning were conducted to achieve better predictions. Based on the results, LR scored the highest AUC of 0.9225 and an F1-score of 0.9194. These results are on the higher side comparing with the past churn prediction studies in online gaming and education industries. As a consequence, the results indicate the effectiveness of the proposed approach for churn determination and prediction in DGBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjz发布了新的文献求助30
1秒前
bkagyin应助当当采纳,获得10
1秒前
田様应助小木子采纳,获得10
1秒前
科研完成签到 ,获得积分10
2秒前
王十二发布了新的文献求助10
2秒前
甜甜的莞完成签到 ,获得积分10
3秒前
Kw完成签到,获得积分10
5秒前
Ventus发布了新的文献求助10
5秒前
5秒前
5秒前
微不足道完成签到,获得积分10
7秒前
风趣的梦之完成签到,获得积分10
7秒前
轩辕忆枫完成签到,获得积分10
8秒前
9秒前
金22完成签到,获得积分10
9秒前
10秒前
Jun55发布了新的文献求助10
10秒前
11秒前
qianmo完成签到,获得积分10
12秒前
12秒前
洪武发布了新的文献求助10
14秒前
liuliuliu发布了新的文献求助10
15秒前
小鱼完成签到 ,获得积分10
16秒前
深情安青应助douyq采纳,获得10
16秒前
personking完成签到,获得积分10
16秒前
匆匆赶路人完成签到 ,获得积分10
17秒前
盒子应助用心听采纳,获得10
19秒前
19秒前
19秒前
老肥完成签到,获得积分10
19秒前
Clarence应助活力小海豚采纳,获得10
20秒前
酷波er应助活力小海豚采纳,获得10
20秒前
21秒前
可乐SAMA完成签到,获得积分10
23秒前
科研通AI2S应助Ventus采纳,获得10
23秒前
Iwylm发布了新的文献求助10
24秒前
当当发布了新的文献求助10
25秒前
25秒前
注册表z关注了科研通微信公众号
25秒前
七米日光发布了新的文献求助10
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046