Churn prediction in digital game-based learning using data mining techniques: Logistic regression, decision tree, and random forest

随机森林 计算机科学 超参数 逻辑回归 决策树 机器学习 特征(语言学) 树(集合论) 工作(物理) 回归 人工智能 统计 数学 工程类 机械工程 数学分析 哲学 语言学
作者
Mai Kiguchi,Waddah Saeed,Imran Medi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:118: 108491-108491 被引量:30
标识
DOI:10.1016/j.asoc.2022.108491
摘要

Educational Technology (EdTech) is an industry that integrates education and technology advances. Digital game-based learning (DGBL) is one of the narrowed-down categories of EdTech. One of the common issues in the EdTech market is the higher churn rate. However, because the DGBL market is still in the early stage, few studies related to marketing perspectives exist. Besides, the approach in education or online gaming industries can be only partially applicable to DGBL. A popular approach for addressing a higher churn rate is churn prediction. By using a dataset from a Japanese company providing DGBL services, this work proposes an approach for the combination of defining churn and churn prediction for DGBL. This work has three objectives. First, determining churn in DGBL by comparing the recency and the addition of average and two standard deviations of user inactive time. Second, clarifying the churn rate of the Japanese service, which became evident as 56.77% by using the newly created churn definition. Third, developing a churn prediction model by comparing logistic regression (LR), decision tree, and random forest models. Feature selection, dataset split ratio comparison, and hyperparameter tuning were conducted to achieve better predictions. Based on the results, LR scored the highest AUC of 0.9225 and an F1-score of 0.9194. These results are on the higher side comparing with the past churn prediction studies in online gaming and education industries. As a consequence, the results indicate the effectiveness of the proposed approach for churn determination and prediction in DGBL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单发布了新的文献求助10
1秒前
doctorZY完成签到,获得积分10
2秒前
情怀应助宿亮东采纳,获得10
2秒前
万能图书馆应助宿亮东采纳,获得10
2秒前
科研通AI2S应助猴猴采纳,获得10
2秒前
李爱国应助dild采纳,获得10
3秒前
3秒前
电致阿光完成签到,获得积分10
3秒前
怕黑的静蕾应助梦比优斯采纳,获得10
4秒前
李健的小迷弟应助Ti采纳,获得10
4秒前
5秒前
烟花应助yy采纳,获得10
5秒前
无花果应助灵巧阑香采纳,获得10
5秒前
gao完成签到,获得积分10
6秒前
pwq发布了新的文献求助10
8秒前
wanci应助干净怀寒采纳,获得30
8秒前
JX完成签到,获得积分10
9秒前
9秒前
leec应助sopha采纳,获得20
11秒前
11秒前
12秒前
爆米花应助xielunwen采纳,获得10
12秒前
传奇3应助义气绿柳采纳,获得10
12秒前
笨笨松发布了新的文献求助10
13秒前
YamDaamCaa给七七丫的求助进行了留言
14秒前
aaaaaa发布了新的文献求助10
14秒前
chengya完成签到,获得积分10
14秒前
14秒前
出其东门完成签到,获得积分10
14秒前
搜集达人应助li采纳,获得10
15秒前
大模型应助Z2WWS32采纳,获得10
15秒前
15秒前
小赵完成签到,获得积分20
16秒前
xl关闭了xl文献求助
16秒前
ZH发布了新的文献求助10
16秒前
泡泡啰叽发布了新的文献求助10
17秒前
18秒前
lys完成签到,获得积分20
19秒前
碎碎念s发布了新的文献求助30
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421