HASIC-Net: Hybrid Attentional Convolutional Neural Network With Structure Information Consistency for Spectral Super-Resolution of RGB Images

计算机科学 RGB颜色模型 人工智能 卷积神经网络 特征提取 模式识别(心理学) 残余物 计算机视觉 算法
作者
Jiaojiao Li,Songcheng Du,Rui Song,Chaoxiong Wu,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:20
标识
DOI:10.1109/tgrs.2022.3142258
摘要

Spectral super-resolution (SSR), referring to the recovery of a reasonable hyperspectral image (HSI) from a single RGB image, has achieved satisfactory performance as part of the continued development of a convolutional neural network (CNN) in remote sensing image processing. However, the majority of existing algorithms focus on the pursuit of networks with deeper or broader architecture. Such algorithms have a poor channel or band feature extraction and fusing performance, and fail to fully leverage the input RGB images. To overcome these issues, we present a novel hybrid attentional CNN with structure information consistency (HASIC-net) that uses a two-pathway architecture. Specifically, both sides are stacked with several 2-D residual groups (2-DRGs) and residual groups (1-DRGs) equipped with channel or band attention (BA) modules, which mainly focuses on extracting channel statistics and bandwise features, respectively, by a parallel pooling architecture. We introduce several transversal connections from 2-DRG to 1-DRG to realize the interaction of information flow between both sides. In addition, we take the structure information of both RGB images and HSI into consideration and devise a structure information consistency (SIC) module to merge the structure tensor prior to the RGB images with the input of each 2-DRG. We then combine spectral gradient constraint loss with mean relative absolute error as a novel loss function to further restrain the spectral distortion and smooth the reconstructed spectral response curves. Experimental results on four benchmark datasets (i.e., NTIRE 2020, NTIRE 2018, CAVE, and Harvard) demonstrate that our proposed HASIC-net achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单点完成签到,获得积分20
刚刚
nns发布了新的文献求助10
1秒前
简单点发布了新的文献求助10
4秒前
Q11发布了新的文献求助10
5秒前
xu完成签到 ,获得积分10
6秒前
温元冬完成签到,获得积分10
6秒前
suzy-123完成签到,获得积分10
6秒前
晓舟完成签到,获得积分10
7秒前
科研通AI2S应助kkkkk采纳,获得10
8秒前
苏打汽水完成签到,获得积分10
9秒前
wanci应助lgh采纳,获得10
11秒前
CodeCraft应助Q11采纳,获得10
12秒前
qsy发布了新的文献求助10
13秒前
阿哈完成签到,获得积分10
14秒前
15秒前
ZSWAA完成签到,获得积分10
16秒前
炙热冬至完成签到,获得积分10
16秒前
ZSWAA发布了新的文献求助10
20秒前
上官若男应助失眠的血茗采纳,获得10
22秒前
wuhen发布了新的文献求助10
23秒前
尔信完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
26秒前
葛擎苍完成签到,获得积分10
27秒前
Aegean发布了新的文献求助20
27秒前
充电宝应助Zpiao采纳,获得10
27秒前
笑南发布了新的文献求助10
28秒前
30秒前
30秒前
这不得行完成签到 ,获得积分10
30秒前
爆米花应助无限的可乐采纳,获得10
30秒前
万万发布了新的文献求助10
30秒前
葛擎苍发布了新的文献求助10
30秒前
稳重海豚发布了新的文献求助10
30秒前
MoonFlows应助爱笑灵竹采纳,获得20
31秒前
Hoodie发布了新的文献求助20
31秒前
庞呵呵发布了新的文献求助10
32秒前
zhaof完成签到 ,获得积分10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157301
求助须知:如何正确求助?哪些是违规求助? 2808735
关于积分的说明 7878261
捐赠科研通 2467077
什么是DOI,文献DOI怎么找? 1313197
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919