HASIC-Net: Hybrid Attentional Convolutional Neural Network With Structure Information Consistency for Spectral Super-Resolution of RGB Images

计算机科学 RGB颜色模型 人工智能 卷积神经网络 特征提取 模式识别(心理学) 残余物 计算机视觉 算法
作者
Jiaojiao Li,Songcheng Du,Rui Song,Chaoxiong Wu,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:26
标识
DOI:10.1109/tgrs.2022.3142258
摘要

Spectral super-resolution (SSR), referring to the recovery of a reasonable hyperspectral image (HSI) from a single RGB image, has achieved satisfactory performance as part of the continued development of a convolutional neural network (CNN) in remote sensing image processing. However, the majority of existing algorithms focus on the pursuit of networks with deeper or broader architecture. Such algorithms have a poor channel or band feature extraction and fusing performance, and fail to fully leverage the input RGB images. To overcome these issues, we present a novel hybrid attentional CNN with structure information consistency (HASIC-net) that uses a two-pathway architecture. Specifically, both sides are stacked with several 2-D residual groups (2-DRGs) and residual groups (1-DRGs) equipped with channel or band attention (BA) modules, which mainly focuses on extracting channel statistics and bandwise features, respectively, by a parallel pooling architecture. We introduce several transversal connections from 2-DRG to 1-DRG to realize the interaction of information flow between both sides. In addition, we take the structure information of both RGB images and HSI into consideration and devise a structure information consistency (SIC) module to merge the structure tensor prior to the RGB images with the input of each 2-DRG. We then combine spectral gradient constraint loss with mean relative absolute error as a novel loss function to further restrain the spectral distortion and smooth the reconstructed spectral response curves. Experimental results on four benchmark datasets (i.e., NTIRE 2020, NTIRE 2018, CAVE, and Harvard) demonstrate that our proposed HASIC-net achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助烦烦烦采纳,获得80
刚刚
吴未完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
青筠发布了新的文献求助10
2秒前
阳光的小笼包完成签到,获得积分10
2秒前
XU2025完成签到 ,获得积分10
3秒前
汉堡包应助梦曼采纳,获得10
3秒前
6秒前
嘻嘻完成签到 ,获得积分10
6秒前
如梦如画发布了新的文献求助10
8秒前
CipherSage应助wangjq采纳,获得10
8秒前
8秒前
9秒前
10秒前
10秒前
艺馨完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
白子双完成签到,获得积分10
12秒前
web1032020297完成签到,获得积分10
12秒前
研友_LX66qZ完成签到,获得积分10
13秒前
李曾文完成签到,获得积分10
13秒前
xyrt发布了新的文献求助30
13秒前
13秒前
14秒前
14秒前
小乔发布了新的文献求助10
14秒前
15秒前
施宇宙发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
nn完成签到,获得积分10
17秒前
Orange应助lynn采纳,获得30
18秒前
小蘑菇应助迷路的初柔采纳,获得10
18秒前
LAN发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492