计算机科学
RGB颜色模型
人工智能
卷积神经网络
特征提取
模式识别(心理学)
残余物
计算机视觉
算法
作者
Jiaojiao Li,Songcheng Du,Rui Song,Chaoxiong Wu,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-15
被引量:20
标识
DOI:10.1109/tgrs.2022.3142258
摘要
Spectral super-resolution (SSR), referring to the recovery of a reasonable hyperspectral image (HSI) from a single RGB image, has achieved satisfactory performance as part of the continued development of a convolutional neural network (CNN) in remote sensing image processing. However, the majority of existing algorithms focus on the pursuit of networks with deeper or broader architecture. Such algorithms have a poor channel or band feature extraction and fusing performance, and fail to fully leverage the input RGB images. To overcome these issues, we present a novel hybrid attentional CNN with structure information consistency (HASIC-net) that uses a two-pathway architecture. Specifically, both sides are stacked with several 2-D residual groups (2-DRGs) and residual groups (1-DRGs) equipped with channel or band attention (BA) modules, which mainly focuses on extracting channel statistics and bandwise features, respectively, by a parallel pooling architecture. We introduce several transversal connections from 2-DRG to 1-DRG to realize the interaction of information flow between both sides. In addition, we take the structure information of both RGB images and HSI into consideration and devise a structure information consistency (SIC) module to merge the structure tensor prior to the RGB images with the input of each 2-DRG. We then combine spectral gradient constraint loss with mean relative absolute error as a novel loss function to further restrain the spectral distortion and smooth the reconstructed spectral response curves. Experimental results on four benchmark datasets (i.e., NTIRE 2020, NTIRE 2018, CAVE, and Harvard) demonstrate that our proposed HASIC-net achieves state-of-the-art performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI