亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HASIC-Net: Hybrid Attentional Convolutional Neural Network With Structure Information Consistency for Spectral Super-Resolution of RGB Images

计算机科学 RGB颜色模型 人工智能 卷积神经网络 特征提取 模式识别(心理学) 残余物 计算机视觉 算法
作者
Jiaojiao Li,Songcheng Du,Rui Song,Chaoxiong Wu,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:26
标识
DOI:10.1109/tgrs.2022.3142258
摘要

Spectral super-resolution (SSR), referring to the recovery of a reasonable hyperspectral image (HSI) from a single RGB image, has achieved satisfactory performance as part of the continued development of a convolutional neural network (CNN) in remote sensing image processing. However, the majority of existing algorithms focus on the pursuit of networks with deeper or broader architecture. Such algorithms have a poor channel or band feature extraction and fusing performance, and fail to fully leverage the input RGB images. To overcome these issues, we present a novel hybrid attentional CNN with structure information consistency (HASIC-net) that uses a two-pathway architecture. Specifically, both sides are stacked with several 2-D residual groups (2-DRGs) and residual groups (1-DRGs) equipped with channel or band attention (BA) modules, which mainly focuses on extracting channel statistics and bandwise features, respectively, by a parallel pooling architecture. We introduce several transversal connections from 2-DRG to 1-DRG to realize the interaction of information flow between both sides. In addition, we take the structure information of both RGB images and HSI into consideration and devise a structure information consistency (SIC) module to merge the structure tensor prior to the RGB images with the input of each 2-DRG. We then combine spectral gradient constraint loss with mean relative absolute error as a novel loss function to further restrain the spectral distortion and smooth the reconstructed spectral response curves. Experimental results on four benchmark datasets (i.e., NTIRE 2020, NTIRE 2018, CAVE, and Harvard) demonstrate that our proposed HASIC-net achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gravity完成签到,获得积分10
刚刚
3秒前
量子星尘发布了新的文献求助10
4秒前
gravity发布了新的文献求助30
4秒前
zzzz发布了新的文献求助10
7秒前
李健的粉丝团团长应助lg采纳,获得10
22秒前
Orange应助昏睡的梦安采纳,获得10
33秒前
35秒前
MchemG应助科研通管家采纳,获得30
35秒前
lsl应助科研通管家采纳,获得10
35秒前
MchemG应助科研通管家采纳,获得30
36秒前
lsl应助科研通管家采纳,获得10
36秒前
C_完成签到,获得积分10
37秒前
shen完成签到 ,获得积分10
39秒前
39秒前
53秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
StH完成签到,获得积分10
1分钟前
Ares完成签到,获得积分10
1分钟前
1分钟前
lg发布了新的文献求助10
1分钟前
情怀应助lu采纳,获得10
2分钟前
shier完成签到,获得积分20
2分钟前
shier发布了新的文献求助10
2分钟前
lg完成签到,获得积分10
2分钟前
Jasper应助shier采纳,获得10
2分钟前
科研通AI6应助Ahan采纳,获得10
2分钟前
大园完成签到 ,获得积分10
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
oshunne完成签到,获得积分10
2分钟前
tttttttt发布了新的文献求助10
2分钟前
CipherSage应助FAYE采纳,获得10
2分钟前
赘婿应助tttttttt采纳,获得20
2分钟前
2分钟前
2分钟前
oshunne发布了新的文献求助10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644707
求助须知:如何正确求助?哪些是违规求助? 4765184
关于积分的说明 15025524
捐赠科研通 4803066
什么是DOI,文献DOI怎么找? 2567894
邀请新用户注册赠送积分活动 1525458
关于科研通互助平台的介绍 1484992