HASIC-Net: Hybrid Attentional Convolutional Neural Network With Structure Information Consistency for Spectral Super-Resolution of RGB Images

计算机科学 RGB颜色模型 人工智能 卷积神经网络 特征提取 模式识别(心理学) 残余物 计算机视觉 算法
作者
Jiaojiao Li,Songcheng Du,Rui Song,Chaoxiong Wu,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:26
标识
DOI:10.1109/tgrs.2022.3142258
摘要

Spectral super-resolution (SSR), referring to the recovery of a reasonable hyperspectral image (HSI) from a single RGB image, has achieved satisfactory performance as part of the continued development of a convolutional neural network (CNN) in remote sensing image processing. However, the majority of existing algorithms focus on the pursuit of networks with deeper or broader architecture. Such algorithms have a poor channel or band feature extraction and fusing performance, and fail to fully leverage the input RGB images. To overcome these issues, we present a novel hybrid attentional CNN with structure information consistency (HASIC-net) that uses a two-pathway architecture. Specifically, both sides are stacked with several 2-D residual groups (2-DRGs) and residual groups (1-DRGs) equipped with channel or band attention (BA) modules, which mainly focuses on extracting channel statistics and bandwise features, respectively, by a parallel pooling architecture. We introduce several transversal connections from 2-DRG to 1-DRG to realize the interaction of information flow between both sides. In addition, we take the structure information of both RGB images and HSI into consideration and devise a structure information consistency (SIC) module to merge the structure tensor prior to the RGB images with the input of each 2-DRG. We then combine spectral gradient constraint loss with mean relative absolute error as a novel loss function to further restrain the spectral distortion and smooth the reconstructed spectral response curves. Experimental results on four benchmark datasets (i.e., NTIRE 2020, NTIRE 2018, CAVE, and Harvard) demonstrate that our proposed HASIC-net achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
5秒前
所所应助shelly采纳,获得10
5秒前
8秒前
传奇3应助王大白采纳,获得10
8秒前
9秒前
JamesPei应助linXY采纳,获得10
9秒前
在水一方应助洛洛采纳,获得10
9秒前
自觉的凡梦完成签到 ,获得积分10
10秒前
hull发布了新的文献求助10
10秒前
搜集达人应助贾霆采纳,获得10
10秒前
11秒前
酷波er应助清爽难敌采纳,获得10
11秒前
Jiangzhibing发布了新的文献求助10
13秒前
13秒前
JamesPei应助小王同学采纳,获得10
14秒前
14秒前
15秒前
wop111应助科研通管家采纳,获得30
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
现代晓绿应助科研通管家采纳,获得10
15秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
16秒前
现代晓绿应助科研通管家采纳,获得10
16秒前
现代晓绿应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
情怀应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
ccm应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125754
求助须知:如何正确求助?哪些是违规求助? 4329444
关于积分的说明 13491137
捐赠科研通 4164408
什么是DOI,文献DOI怎么找? 2282909
邀请新用户注册赠送积分活动 1283936
关于科研通互助平台的介绍 1223344