STAM: A SpatioTemporal Attention Based Memory for Video Prediction

计算机科学 人工智能 代表(政治) 模式识别(心理学) 政治 政治学 法学
作者
Zheng Chang,Xinfeng Zhang,Shanshe Wang,Siwei Ma,Wen Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2354-2367 被引量:12
标识
DOI:10.1109/tmm.2022.3146721
摘要

Video prediction has always been a very challenging problem in video representation learning due to the complexity in spatial structure and temporal variation. However, existing methods mainly predict videos by employing language-based memory structures from the traditional Long Short-Term Memories (LSTMs) or Gated Recurrent Units (GRUs), which may not be powerful enough to model the long-term dependencies in videos, consisting of much more complex spatiotemporal dynamics than sentences. In this paper, we propose a SpatioTemporal Attention based Memory (STAM), which can efficiently improve the long-term spatiotemporal memorizing capacity by incorporating the global spatiotemporal information in videos. In the temporal domain, the proposed STAM aims to observe temporal states from a wider temporal receptive field to capture accurate global motion information. In the spatial domain, the proposed STAM aims to jointly utilize both the high-level semantic spatial state and the low-level texture spatial states to model a more reliable global spatial representation for videos. In particular, the global spatiotemporal information is extracted with the help of an Efficient SpatioTemporal Attention Gate (ESTAG), which can adaptively apply different levels of attention scores to different spatiotemporal states according to their importance. Moreover, the proposed STAM are built with 3D convolutional layers due to their advantages in modeling spatiotemporal dynamics for videos. Experimental results show that the proposed STAM can achieve state-of-the-art performance on widely used datasets by leveraging the proposed spatiotemporal representations for videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
超级的立轩完成签到,获得积分20
1秒前
2秒前
去微软完成签到,获得积分10
2秒前
2秒前
喵不二完成签到,获得积分10
3秒前
3秒前
哈哈哈发布了新的文献求助10
4秒前
渝安完成签到,获得积分10
5秒前
嘉嘉完成签到,获得积分10
5秒前
nini发布了新的文献求助10
6秒前
嚣张的小张完成签到,获得积分10
6秒前
ericzhouxx发布了新的文献求助10
7秒前
7秒前
咩咩发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
NexusExplorer应助抹茶肥肠采纳,获得10
10秒前
GGDA完成签到 ,获得积分10
11秒前
风中雪青发布了新的文献求助30
12秒前
shinian发布了新的文献求助10
12秒前
李健的小迷弟应助wuwei采纳,获得10
12秒前
daxiangjiao完成签到 ,获得积分10
13秒前
搜集达人应助直率的彤采纳,获得10
14秒前
15秒前
张益维发布了新的文献求助10
16秒前
Wa完成签到,获得积分10
16秒前
搜集达人应助中年科研狗采纳,获得10
16秒前
无情的烨伟完成签到,获得积分10
17秒前
无花果应助小广采纳,获得10
18秒前
18秒前
21秒前
深情安青应助韵寒采纳,获得10
22秒前
FashionBoy应助邵邵采纳,获得10
22秒前
充电宝应助cc采纳,获得10
23秒前
香蕉觅云应助cf2v采纳,获得10
23秒前
23秒前
Garry应助自由的凌雪采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344