STAM: A SpatioTemporal Attention Based Memory for Video Prediction

计算机科学 人工智能 代表(政治) 模式识别(心理学) 政治学 政治 法学
作者
Zheng Chang,Xinfeng Zhang,Shanshe Wang,Siwei Ma,Wen Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2354-2367 被引量:12
标识
DOI:10.1109/tmm.2022.3146721
摘要

Video prediction has always been a very challenging problem in video representation learning due to the complexity in spatial structure and temporal variation. However, existing methods mainly predict videos by employing language-based memory structures from the traditional Long Short-Term Memories (LSTMs) or Gated Recurrent Units (GRUs), which may not be powerful enough to model the long-term dependencies in videos, consisting of much more complex spatiotemporal dynamics than sentences. In this paper, we propose a SpatioTemporal Attention based Memory (STAM), which can efficiently improve the long-term spatiotemporal memorizing capacity by incorporating the global spatiotemporal information in videos. In the temporal domain, the proposed STAM aims to observe temporal states from a wider temporal receptive field to capture accurate global motion information. In the spatial domain, the proposed STAM aims to jointly utilize both the high-level semantic spatial state and the low-level texture spatial states to model a more reliable global spatial representation for videos. In particular, the global spatiotemporal information is extracted with the help of an Efficient SpatioTemporal Attention Gate (ESTAG), which can adaptively apply different levels of attention scores to different spatiotemporal states according to their importance. Moreover, the proposed STAM are built with 3D convolutional layers due to their advantages in modeling spatiotemporal dynamics for videos. Experimental results show that the proposed STAM can achieve state-of-the-art performance on widely used datasets by leveraging the proposed spatiotemporal representations for videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助ll采纳,获得10
1秒前
yellow发布了新的文献求助10
1秒前
C_Cppp完成签到,获得积分10
1秒前
两滴水的云完成签到,获得积分10
2秒前
2秒前
Echor关注了科研通微信公众号
3秒前
3秒前
3秒前
hm777发布了新的文献求助10
3秒前
KALIdemo158发布了新的文献求助20
3秒前
3秒前
22222发布了新的文献求助30
3秒前
花影移完成签到,获得积分10
4秒前
不安沅完成签到,获得积分10
4秒前
4秒前
4秒前
su完成签到,获得积分10
4秒前
5秒前
cm完成签到,获得积分10
5秒前
5秒前
scanker1981完成签到,获得积分10
6秒前
李正安发布了新的文献求助10
6秒前
Akim应助从容的如波采纳,获得10
8秒前
8秒前
8秒前
MXL发布了新的文献求助10
8秒前
知秋发布了新的文献求助10
8秒前
9秒前
过分着迷完成签到,获得积分10
10秒前
wu完成签到,获得积分20
10秒前
二十三发布了新的文献求助10
10秒前
uuaopiggy完成签到,获得积分20
10秒前
11秒前
11秒前
ttt完成签到,获得积分10
11秒前
飞飞应助老仙翁采纳,获得30
12秒前
hm777完成签到,获得积分10
12秒前
香蕉觅云应助要减肥金鑫采纳,获得50
12秒前
安静的小蚂蚁完成签到,获得积分10
13秒前
充电宝应助小王采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589486
求助须知:如何正确求助?哪些是违规求助? 4674213
关于积分的说明 14792351
捐赠科研通 4628515
什么是DOI,文献DOI怎么找? 2532297
邀请新用户注册赠送积分活动 1500964
关于科研通互助平台的介绍 1468454