STAM: A SpatioTemporal Attention Based Memory for Video Prediction

计算机科学 人工智能 代表(政治) 模式识别(心理学) 政治 政治学 法学
作者
Zheng Chang,Xinfeng Zhang,Shanshe Wang,Siwei Ma,Wen Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2354-2367 被引量:12
标识
DOI:10.1109/tmm.2022.3146721
摘要

Video prediction has always been a very challenging problem in video representation learning due to the complexity in spatial structure and temporal variation. However, existing methods mainly predict videos by employing language-based memory structures from the traditional Long Short-Term Memories (LSTMs) or Gated Recurrent Units (GRUs), which may not be powerful enough to model the long-term dependencies in videos, consisting of much more complex spatiotemporal dynamics than sentences. In this paper, we propose a SpatioTemporal Attention based Memory (STAM), which can efficiently improve the long-term spatiotemporal memorizing capacity by incorporating the global spatiotemporal information in videos. In the temporal domain, the proposed STAM aims to observe temporal states from a wider temporal receptive field to capture accurate global motion information. In the spatial domain, the proposed STAM aims to jointly utilize both the high-level semantic spatial state and the low-level texture spatial states to model a more reliable global spatial representation for videos. In particular, the global spatiotemporal information is extracted with the help of an Efficient SpatioTemporal Attention Gate (ESTAG), which can adaptively apply different levels of attention scores to different spatiotemporal states according to their importance. Moreover, the proposed STAM are built with 3D convolutional layers due to their advantages in modeling spatiotemporal dynamics for videos. Experimental results show that the proposed STAM can achieve state-of-the-art performance on widely used datasets by leveraging the proposed spatiotemporal representations for videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心纸鹤发布了新的文献求助10
刚刚
刚刚
脑洞疼应助Richard采纳,获得10
刚刚
聂落雁完成签到,获得积分10
1秒前
Jonathan完成签到,获得积分10
1秒前
浮游应助秋风之墩采纳,获得10
1秒前
KeYang完成签到,获得积分10
2秒前
2秒前
2秒前
ysxl发布了新的文献求助10
3秒前
清秀青荷完成签到,获得积分10
3秒前
科研通AI6应助WYS采纳,获得50
3秒前
3秒前
科研通AI6应助xwxhbydmet采纳,获得10
4秒前
热心的送终完成签到 ,获得积分10
4秒前
thuuu完成签到,获得积分10
4秒前
子车谷波完成签到,获得积分10
4秒前
鳗鱼绿蝶发布了新的文献求助10
5秒前
zhucc发布了新的文献求助10
5秒前
6秒前
6秒前
sunny发布了新的文献求助30
6秒前
myc641发布了新的文献求助10
6秒前
牧林听风发布了新的文献求助10
6秒前
year完成签到,获得积分10
7秒前
小富婆完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
CR7应助ZiZi采纳,获得20
12秒前
量子星尘发布了新的文献求助10
12秒前
yxsh完成签到,获得积分10
13秒前
feifei发布了新的文献求助10
13秒前
13秒前
黑马王子发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI2S应助Dguojiang采纳,获得10
15秒前
不想长大发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244