STAM: A SpatioTemporal Attention Based Memory for Video Prediction

计算机科学 人工智能 代表(政治) 模式识别(心理学) 政治 政治学 法学
作者
Zheng Chang,Xinfeng Zhang,Shanshe Wang,Siwei Ma,Wen Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2354-2367 被引量:12
标识
DOI:10.1109/tmm.2022.3146721
摘要

Video prediction has always been a very challenging problem in video representation learning due to the complexity in spatial structure and temporal variation. However, existing methods mainly predict videos by employing language-based memory structures from the traditional Long Short-Term Memories (LSTMs) or Gated Recurrent Units (GRUs), which may not be powerful enough to model the long-term dependencies in videos, consisting of much more complex spatiotemporal dynamics than sentences. In this paper, we propose a SpatioTemporal Attention based Memory (STAM), which can efficiently improve the long-term spatiotemporal memorizing capacity by incorporating the global spatiotemporal information in videos. In the temporal domain, the proposed STAM aims to observe temporal states from a wider temporal receptive field to capture accurate global motion information. In the spatial domain, the proposed STAM aims to jointly utilize both the high-level semantic spatial state and the low-level texture spatial states to model a more reliable global spatial representation for videos. In particular, the global spatiotemporal information is extracted with the help of an Efficient SpatioTemporal Attention Gate (ESTAG), which can adaptively apply different levels of attention scores to different spatiotemporal states according to their importance. Moreover, the proposed STAM are built with 3D convolutional layers due to their advantages in modeling spatiotemporal dynamics for videos. Experimental results show that the proposed STAM can achieve state-of-the-art performance on widely used datasets by leveraging the proposed spatiotemporal representations for videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李元强完成签到,获得积分10
1秒前
1秒前
1秒前
酷波er应助一棵白菜采纳,获得10
2秒前
Luoling完成签到,获得积分10
2秒前
潘榆发布了新的文献求助10
2秒前
小石头发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
坛子发布了新的文献求助10
4秒前
科目三应助毛77采纳,获得10
4秒前
Jasper应助陈一采纳,获得10
5秒前
Kasom完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
领导范儿应助石土土采纳,获得10
6秒前
wenjiaolin完成签到,获得积分10
7秒前
CodeCraft应助粉色娇嫩采纳,获得10
7秒前
研友_knggYn发布了新的文献求助10
7秒前
7秒前
你好完成签到,获得积分10
8秒前
8秒前
热心凡雁发布了新的文献求助10
8秒前
CipherSage应助无心的复天采纳,获得10
8秒前
yciDo完成签到,获得积分10
9秒前
科研通AI5应助reegdsgsfd采纳,获得10
9秒前
烂漫的筮发布了新的文献求助10
10秒前
wangyapeng完成签到,获得积分10
10秒前
10秒前
02完成签到,获得积分10
11秒前
11秒前
青松完成签到,获得积分20
11秒前
11秒前
悉达多发布了新的文献求助10
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154942
求助须知:如何正确求助?哪些是违规求助? 4350694
关于积分的说明 13546246
捐赠科研通 4193517
什么是DOI,文献DOI怎么找? 2299960
邀请新用户注册赠送积分活动 1299897
关于科研通互助平台的介绍 1244949