STAM: A SpatioTemporal Attention Based Memory for Video Prediction

计算机科学 人工智能 代表(政治) 模式识别(心理学) 政治 政治学 法学
作者
Zheng Chang,Xinfeng Zhang,Shanshe Wang,Siwei Ma,Wen Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2354-2367 被引量:12
标识
DOI:10.1109/tmm.2022.3146721
摘要

Video prediction has always been a very challenging problem in video representation learning due to the complexity in spatial structure and temporal variation. However, existing methods mainly predict videos by employing language-based memory structures from the traditional Long Short-Term Memories (LSTMs) or Gated Recurrent Units (GRUs), which may not be powerful enough to model the long-term dependencies in videos, consisting of much more complex spatiotemporal dynamics than sentences. In this paper, we propose a SpatioTemporal Attention based Memory (STAM), which can efficiently improve the long-term spatiotemporal memorizing capacity by incorporating the global spatiotemporal information in videos. In the temporal domain, the proposed STAM aims to observe temporal states from a wider temporal receptive field to capture accurate global motion information. In the spatial domain, the proposed STAM aims to jointly utilize both the high-level semantic spatial state and the low-level texture spatial states to model a more reliable global spatial representation for videos. In particular, the global spatiotemporal information is extracted with the help of an Efficient SpatioTemporal Attention Gate (ESTAG), which can adaptively apply different levels of attention scores to different spatiotemporal states according to their importance. Moreover, the proposed STAM are built with 3D convolutional layers due to their advantages in modeling spatiotemporal dynamics for videos. Experimental results show that the proposed STAM can achieve state-of-the-art performance on widely used datasets by leveraging the proposed spatiotemporal representations for videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
1秒前
SciGPT应助damonvincent采纳,获得10
2秒前
科研通AI5应助王哪跑12采纳,获得10
2秒前
boyaray发布了新的文献求助10
3秒前
3秒前
Beyond驳回了wanci应助
4秒前
4秒前
浮游应助飞飞采纳,获得10
4秒前
R1ght发布了新的文献求助10
5秒前
科目三应助焚天尘殇采纳,获得10
6秒前
Aurora完成签到 ,获得积分10
6秒前
AptRank完成签到,获得积分10
7秒前
大个应助杨涛采纳,获得10
7秒前
Ly发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
李婷婷发布了新的文献求助10
10秒前
11秒前
Raine完成签到,获得积分10
12秒前
ustina完成签到,获得积分10
12秒前
儒雅红牛完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
tang应助万类霜天竞自由采纳,获得50
15秒前
15秒前
15秒前
15秒前
S月小小发布了新的文献求助10
16秒前
17秒前
18秒前
所所应助秋风采纳,获得10
18秒前
Thien发布了新的文献求助30
19秒前
焚天尘殇发布了新的文献求助10
19秒前
19秒前
上官老黑完成签到 ,获得积分10
19秒前
开心果发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990904
求助须知:如何正确求助?哪些是违规求助? 4239640
关于积分的说明 13207664
捐赠科研通 4034323
什么是DOI,文献DOI怎么找? 2207244
邀请新用户注册赠送积分活动 1218305
关于科研通互助平台的介绍 1136629