STAM: A SpatioTemporal Attention Based Memory for Video Prediction

计算机科学 人工智能 代表(政治) 模式识别(心理学) 政治学 政治 法学
作者
Zheng Chang,Xinfeng Zhang,Shanshe Wang,Siwei Ma,Wen Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2354-2367 被引量:12
标识
DOI:10.1109/tmm.2022.3146721
摘要

Video prediction has always been a very challenging problem in video representation learning due to the complexity in spatial structure and temporal variation. However, existing methods mainly predict videos by employing language-based memory structures from the traditional Long Short-Term Memories (LSTMs) or Gated Recurrent Units (GRUs), which may not be powerful enough to model the long-term dependencies in videos, consisting of much more complex spatiotemporal dynamics than sentences. In this paper, we propose a SpatioTemporal Attention based Memory (STAM), which can efficiently improve the long-term spatiotemporal memorizing capacity by incorporating the global spatiotemporal information in videos. In the temporal domain, the proposed STAM aims to observe temporal states from a wider temporal receptive field to capture accurate global motion information. In the spatial domain, the proposed STAM aims to jointly utilize both the high-level semantic spatial state and the low-level texture spatial states to model a more reliable global spatial representation for videos. In particular, the global spatiotemporal information is extracted with the help of an Efficient SpatioTemporal Attention Gate (ESTAG), which can adaptively apply different levels of attention scores to different spatiotemporal states according to their importance. Moreover, the proposed STAM are built with 3D convolutional layers due to their advantages in modeling spatiotemporal dynamics for videos. Experimental results show that the proposed STAM can achieve state-of-the-art performance on widely used datasets by leveraging the proposed spatiotemporal representations for videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的棉花糖完成签到,获得积分10
刚刚
1秒前
lucky发布了新的文献求助10
1秒前
1秒前
2秒前
pp发布了新的文献求助10
2秒前
2秒前
飞扑大王完成签到,获得积分10
2秒前
2秒前
贝儿发布了新的文献求助10
3秒前
zxy发布了新的文献求助10
3秒前
zse发布了新的文献求助10
3秒前
3秒前
3秒前
Jimmy发布了新的文献求助10
3秒前
舒心平蝶完成签到,获得积分20
3秒前
momokop完成签到,获得积分10
3秒前
wushengdeyu发布了新的文献求助10
3秒前
爱吃粑粑发布了新的文献求助10
4秒前
4秒前
zkc完成签到,获得积分10
4秒前
4秒前
4秒前
壹贰叁应助jojo采纳,获得10
4秒前
ldh应助jojo采纳,获得10
4秒前
5秒前
5秒前
壹贰叁应助jojo采纳,获得10
5秒前
merry完成签到,获得积分10
5秒前
隐形曼青应助煜琪采纳,获得10
5秒前
满意沛槐完成签到 ,获得积分10
5秒前
情怀应助李志采纳,获得10
5秒前
6秒前
科研底层韭菜应助hismeng采纳,获得10
6秒前
6秒前
儒雅的不愁完成签到 ,获得积分10
6秒前
gigiW完成签到,获得积分10
6秒前
6秒前
科研通AI6应助归海诗珊采纳,获得10
6秒前
星辰大海应助来杯乌龙茶采纳,获得30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506531
求助须知:如何正确求助?哪些是违规求助? 4602075
关于积分的说明 14479755
捐赠科研通 4535954
什么是DOI,文献DOI怎么找? 2485767
邀请新用户注册赠送积分活动 1468544
关于科研通互助平台的介绍 1441056