Hierarchical graph attention network for miRNA-disease association prediction

疾病 小RNA 计算生物学 机制(生物学) 生物标志物 生物 生物信息学 计算机科学
作者
Zhengwei Li,Tangbo Zhong,Deshuang Huang,Zhu-Hong You,Ru Nie
出处
期刊:Molecular Therapy [Elsevier BV]
卷期号:30 (4): 1775-1786 被引量:1
标识
DOI:10.1016/j.ymthe.2022.01.041
摘要

Many biological studies show that the mutation and abnormal expression of microRNAs (miRNAs) could cause a variety of diseases. As an important biomarker for disease diagnosis, miRNA is helpful to understand pathogenesis, and could promote the identification, diagnosis and treatment of diseases. However, the pathogenic mechanism how miRNAs affect these diseases has not been fully understood. Therefore, predicting the potential miRNA-disease associations is of great importance for the development of clinical medicine and drug research. In this study, we proposed a novel deep learning model based on hierarchical graph attention network for predicting miRNA-disease associations (HGANMDA). Firstly, we constructed a miRNA-disease-lncRNA heterogeneous graph based on known miRNA-disease associations, miRNA-lncRNA associations and disease-lncRNA associations. Secondly, the node-layer attention was applied to learn the importance of neighbor nodes based on different meta-paths. Thirdly, the semantic-layer attention was applied to learn the importance of different meta-paths. Finally, a bilinear decoder was employed to reconstruct the connections between miRNAs and diseases. The extensive experimental results indicated that our model achieved good performance and satisfactory results in predicting miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助吴兰田采纳,获得10
1秒前
熬熬就出头了完成签到,获得积分10
1秒前
1秒前
guoweismmu完成签到,获得积分10
2秒前
3秒前
3秒前
玖月完成签到,获得积分10
4秒前
aqiuyuehe发布了新的文献求助80
4秒前
fd163c应助Ann采纳,获得10
4秒前
5秒前
南风似潇完成签到 ,获得积分10
5秒前
5秒前
不羁的红枫叶完成签到 ,获得积分10
6秒前
7秒前
11完成签到,获得积分20
7秒前
金轩完成签到 ,获得积分10
8秒前
8秒前
啦啦啦发布了新的文献求助10
9秒前
10秒前
春日午后完成签到,获得积分10
10秒前
aqiuyuehe完成签到,获得积分10
11秒前
11发布了新的文献求助30
12秒前
RYYYYYYY233完成签到,获得积分10
13秒前
13秒前
六便士完成签到,获得积分10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
我问问发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
fd163c应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
nuoyefenfei应助科研通管家采纳,获得20
15秒前
种桃老总发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356