Predicting crop yields using a new robust Bayesian averaging model based on multiple hybrid ANFIS and MLP models

自适应神经模糊推理系统 粒子群优化 感知器 作物产量 平均绝对百分比误差 多层感知器 人工神经网络 产量(工程) 计算机科学 机器学习 数学 统计 人工智能 农业工程 模糊逻辑 工程类 农学 模糊控制系统 生物 冶金 材料科学
作者
Ommolbanin Bazrafshan,Mohammad Ehteram,Sarmad Dashti Latif,Yuk Feng Huang,Fang Yenn Teo,Ali Najah Ahmed,Ahmed El‐Shafie
出处
期刊:Ain Shams Engineering Journal [Elsevier]
卷期号:13 (5): 101724-101724 被引量:44
标识
DOI:10.1016/j.asej.2022.101724
摘要

Predicting crop yield is an important issue for farmers. Food security is important for decision-makers. The agriculture industry can more accurately supply human demand for food if the crop yield is predicted accurately. Tomato is one of the most important crops so that 160 million tonnes of tomatoes are produced annually around the world. In this study, tomato yield based on data of 40 cities of Iran country including annual average temperature (T), relative humidity (RH), effective rainfall (R), wind speed (WS), and Evapotranspiration (EV) for the period of 1968–2018 was predicted using a new Bayesian model averaging (BMA). The paper's main innovation is the use of the new BMA so that it allows the modellers to quantify the uncertainty of model parameters and inputs simultaneously. For this aim, first, the multiple Adaptive neuro-fuzzy interface system (ANFIS) and multi-layer perceptron (MLP) were used for predicting crop yield. To train the ANFIS and MLP model, a new algorithm, namely, multi verse optimization algorithm (MOA) was used. Also, the ability of MOA was benchmarked against the particle swarm optimization (PSO), and firefly algorithm (FFA). In the next level, the new BMA used the outputs of the ANFIS-MOA, MLP-MOA, ANFIS, FFA, MLP-FFA, ANFIS-PSO, MLP-PSO, ANFIS, and MLP for predicting tomato yield in an ensemble framework. The five- input combination of RH, T, and R, WS, and EV gave the best result. The mean absolute error (MAE) of the BMA in the testing level was 20.12 (Ton/ha) while it was 24.12, 24.45, 24.67, 25.12, 29.12, 30.12, 31.12, and 33.45 for the ANFIS-MOA, MLP-MOA, ANFIS-FFA, MLP-FFA, ANFIS-PSO, MLP-PSO, ANFIS, and MLP models. Regarding the results of uncertainty analysis, the uncertainty of BMA was lower than those of the ANFIS-MOA, MLP-MOA, ANFIS-FFA, MLP-FFA, ANFIS-PSO, MLP-PSO, ANFIS, and MLP models while the MLP model provided the highest uncertainty. The results of this study indicated that BMA using multiple MLP and ANFIS model was useful for predicting tomato yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑大侠完成签到 ,获得积分10
1秒前
斯文败类应助Hover采纳,获得10
2秒前
2秒前
2秒前
KH完成签到,获得积分10
2秒前
小破网完成签到 ,获得积分0
4秒前
5秒前
大概是Hachi8完成签到,获得积分10
6秒前
酷波er应助pan采纳,获得10
7秒前
万能图书馆应助小蚂蚁采纳,获得10
8秒前
8秒前
一剪梅666发布了新的文献求助10
8秒前
小马甲应助jackpot采纳,获得10
10秒前
tuanheqi应助科研胖子采纳,获得80
11秒前
舒心以蓝完成签到,获得积分10
12秒前
啦啦啦完成签到,获得积分10
12秒前
tuanheqi应助完美的海秋采纳,获得30
12秒前
ferritin完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
科研通AI2S应助Hover采纳,获得10
17秒前
kissinger发布了新的文献求助10
18秒前
吃货发布了新的文献求助10
18秒前
DoIt完成签到,获得积分10
19秒前
joyce完成签到,获得积分10
20秒前
jackpot完成签到,获得积分10
21秒前
22秒前
22秒前
hhh完成签到,获得积分10
23秒前
鸣蜩十三完成签到,获得积分10
23秒前
明天要摆烂完成签到,获得积分10
25秒前
26秒前
kirirto完成签到,获得积分10
27秒前
27秒前
整齐芷文发布了新的文献求助10
27秒前
28秒前
星辰大海应助张zz采纳,获得10
28秒前
kissinger完成签到,获得积分20
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242378
求助须知:如何正确求助?哪些是违规求助? 2886738
关于积分的说明 8244689
捐赠科研通 2555278
什么是DOI,文献DOI怎么找? 1383372
科研通“疑难数据库(出版商)”最低求助积分说明 649702
邀请新用户注册赠送积分活动 625533