Predicting crop yields using a new robust Bayesian averaging model based on multiple hybrid ANFIS and MLP models

自适应神经模糊推理系统 粒子群优化 感知器 作物产量 平均绝对百分比误差 多层感知器 人工神经网络 产量(工程) 计算机科学 机器学习 数学 统计 人工智能 农业工程 模糊逻辑 工程类 农学 模糊控制系统 生物 材料科学 冶金
作者
Ommolbanin Bazrafshan,Mohammad Ehteram,Sarmad Dashti Latif,Yuk Feng Huang,Fang Yenn Teo,Ali Najah Ahmed,Ahmed El‐Shafie
出处
期刊:Ain Shams Engineering Journal [Elsevier]
卷期号:13 (5): 101724-101724 被引量:44
标识
DOI:10.1016/j.asej.2022.101724
摘要

Predicting crop yield is an important issue for farmers. Food security is important for decision-makers. The agriculture industry can more accurately supply human demand for food if the crop yield is predicted accurately. Tomato is one of the most important crops so that 160 million tonnes of tomatoes are produced annually around the world. In this study, tomato yield based on data of 40 cities of Iran country including annual average temperature (T), relative humidity (RH), effective rainfall (R), wind speed (WS), and Evapotranspiration (EV) for the period of 1968–2018 was predicted using a new Bayesian model averaging (BMA). The paper's main innovation is the use of the new BMA so that it allows the modellers to quantify the uncertainty of model parameters and inputs simultaneously. For this aim, first, the multiple Adaptive neuro-fuzzy interface system (ANFIS) and multi-layer perceptron (MLP) were used for predicting crop yield. To train the ANFIS and MLP model, a new algorithm, namely, multi verse optimization algorithm (MOA) was used. Also, the ability of MOA was benchmarked against the particle swarm optimization (PSO), and firefly algorithm (FFA). In the next level, the new BMA used the outputs of the ANFIS-MOA, MLP-MOA, ANFIS, FFA, MLP-FFA, ANFIS-PSO, MLP-PSO, ANFIS, and MLP for predicting tomato yield in an ensemble framework. The five- input combination of RH, T, and R, WS, and EV gave the best result. The mean absolute error (MAE) of the BMA in the testing level was 20.12 (Ton/ha) while it was 24.12, 24.45, 24.67, 25.12, 29.12, 30.12, 31.12, and 33.45 for the ANFIS-MOA, MLP-MOA, ANFIS-FFA, MLP-FFA, ANFIS-PSO, MLP-PSO, ANFIS, and MLP models. Regarding the results of uncertainty analysis, the uncertainty of BMA was lower than those of the ANFIS-MOA, MLP-MOA, ANFIS-FFA, MLP-FFA, ANFIS-PSO, MLP-PSO, ANFIS, and MLP models while the MLP model provided the highest uncertainty. The results of this study indicated that BMA using multiple MLP and ANFIS model was useful for predicting tomato yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫尔摩斯完成签到,获得积分10
1秒前
1秒前
1秒前
沉默牛排发布了新的文献求助10
1秒前
科研通AI5应助独特微笑采纳,获得10
1秒前
2秒前
2秒前
碧玉墨绿完成签到,获得积分10
2秒前
xiaoma完成签到,获得积分10
2秒前
3秒前
潇洒的擎苍完成签到,获得积分10
3秒前
刘晓纳发布了新的文献求助10
3秒前
晴子发布了新的文献求助10
3秒前
洛鸢发布了新的文献求助10
4秒前
立马毕业完成签到,获得积分10
4秒前
卫尔摩斯发布了新的文献求助10
4秒前
BINBIN完成签到 ,获得积分10
4秒前
hfgeyt完成签到,获得积分10
5秒前
sakurai应助背后的诺言采纳,获得10
5秒前
湘华发布了新的文献求助10
6秒前
Jenny应助lan采纳,获得10
6秒前
单薄的飞松完成签到 ,获得积分10
6秒前
醒醒发布了新的文献求助10
6秒前
7秒前
恨安完成签到,获得积分10
7秒前
jijahui发布了新的文献求助30
7秒前
南瓜咸杏发布了新的文献求助30
7秒前
8秒前
调研昵称发布了新的文献求助50
8秒前
9秒前
白白不读书完成签到 ,获得积分10
9秒前
10秒前
AIA7发布了新的文献求助10
10秒前
10秒前
10秒前
夏橪完成签到,获得积分10
10秒前
10秒前
dddddd发布了新的文献求助10
11秒前
什么也难不倒我完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762