An Efficient EEG Microstate Analysis Method for Emotion Study

地方政府 脑电图 唤醒 价(化学) 神经生理学 感知 心理学 情绪识别 认知心理学 计算机科学 人工智能 模式识别(心理学) 神经科学 量子力学 物理
作者
Wanrou Hu,Li Zhang,Gan Huang,Linling Li,Zhiguo Zhang,Zhen Liang
标识
DOI:10.1145/3502803.3502808
摘要

Emotion plays an essential role in human health and daily life. Estimating emotions in a brain-level dynamic approach helps to understand the underlying neural mechanism, deepen emotion interpretation, and boost the development of affective computing technology for practical application. EEG microstate analysis is a powerful neurophysiological tool for dynamic EEG characterization, covering both temporal and spatial information of brain activities. In this paper, EEG microstate analysis is introduced for the dynamic analysis of video-evoked emotions. A sequential clustering process is proposed for validated and representative microstates detection for emotion-related EEG dynamics characterization, and the underlying neural activation patterns under different emotion states are explored. A study of emotion-related electrophysiological mechanisms is conducted for investigating the emotional perception and processing in the brain responses. The results demonstrate that EEG microstates extracted from the proposed sequential clustering are discriminative for dynamic emotion analysis. Besides, the dynamically evoked emotions can be effectively described by the activation patterns of EEG microstates, where an increased activation of MS2 and MS4 but decrease activation of MS3 are found after emotion induction. Furthermore, distinct emotional-level effects for valence and arousal are observed, where MS4 activities are negatively associated with valence level, and MS3 activities are positively associated with arousal level. In all, our work validates the possibility of applying EEG microstate analysis for emotion-related neural mechanism investigation. It has also proved EEG microstate analysis is a powerful tool for exploring spatial-temporal brain changes through emotion perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy完成签到,获得积分10
1秒前
古柳完成签到,获得积分10
1秒前
1秒前
Hello应助ROSE采纳,获得10
1秒前
儒雅的冥王星完成签到,获得积分10
2秒前
3秒前
3秒前
JAMA兜里揣发布了新的文献求助10
3秒前
4秒前
李健的小迷弟应助giao采纳,获得20
6秒前
你好呀完成签到,获得积分10
6秒前
6秒前
JamesPei应助KSung采纳,获得10
6秒前
7秒前
7秒前
俏皮不可发布了新的文献求助10
8秒前
球球应助Dr大壮采纳,获得10
8秒前
YTY完成签到,获得积分10
8秒前
9秒前
9秒前
幸福无声完成签到,获得积分10
9秒前
9秒前
你好呀发布了新的文献求助10
10秒前
10秒前
不知完成签到 ,获得积分10
10秒前
Zyy发布了新的文献求助10
11秒前
彭于晏应助俏皮不可采纳,获得10
11秒前
傻子完成签到,获得积分10
11秒前
脑洞疼应助伶俜者采纳,获得10
11秒前
11秒前
星野完成签到,获得积分10
12秒前
幸福无声发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
xianle发布了新的文献求助10
14秒前
15秒前
LZ发布了新的文献求助10
15秒前
桐桐应助简单笑南采纳,获得10
16秒前
pluto应助albertxin采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475270
求助须知:如何正确求助?哪些是违规求助? 4576905
关于积分的说明 14360021
捐赠科研通 4504888
什么是DOI,文献DOI怎么找? 2468404
邀请新用户注册赠送积分活动 1456055
关于科研通互助平台的介绍 1429828