An Efficient EEG Microstate Analysis Method for Emotion Study

地方政府 脑电图 唤醒 价(化学) 神经生理学 感知 心理学 情绪识别 认知心理学 计算机科学 人工智能 模式识别(心理学) 神经科学 量子力学 物理
作者
Wanrou Hu,Li Zhang,Gan Huang,Linling Li,Zhiguo Zhang,Zhen Liang
标识
DOI:10.1145/3502803.3502808
摘要

Emotion plays an essential role in human health and daily life. Estimating emotions in a brain-level dynamic approach helps to understand the underlying neural mechanism, deepen emotion interpretation, and boost the development of affective computing technology for practical application. EEG microstate analysis is a powerful neurophysiological tool for dynamic EEG characterization, covering both temporal and spatial information of brain activities. In this paper, EEG microstate analysis is introduced for the dynamic analysis of video-evoked emotions. A sequential clustering process is proposed for validated and representative microstates detection for emotion-related EEG dynamics characterization, and the underlying neural activation patterns under different emotion states are explored. A study of emotion-related electrophysiological mechanisms is conducted for investigating the emotional perception and processing in the brain responses. The results demonstrate that EEG microstates extracted from the proposed sequential clustering are discriminative for dynamic emotion analysis. Besides, the dynamically evoked emotions can be effectively described by the activation patterns of EEG microstates, where an increased activation of MS2 and MS4 but decrease activation of MS3 are found after emotion induction. Furthermore, distinct emotional-level effects for valence and arousal are observed, where MS4 activities are negatively associated with valence level, and MS3 activities are positively associated with arousal level. In all, our work validates the possibility of applying EEG microstate analysis for emotion-related neural mechanism investigation. It has also proved EEG microstate analysis is a powerful tool for exploring spatial-temporal brain changes through emotion perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐完成签到,获得积分10
刚刚
冯11完成签到,获得积分10
刚刚
你是谁完成签到,获得积分10
1秒前
妮妮完成签到,获得积分10
1秒前
小小鱼发布了新的文献求助10
2秒前
yuan发布了新的文献求助10
2秒前
爆米花应助别吃小米粥采纳,获得10
2秒前
小侯发布了新的文献求助10
2秒前
Anny完成签到,获得积分10
2秒前
小巫子完成签到,获得积分20
2秒前
鬼火完成签到,获得积分10
2秒前
2秒前
科研通AI5应助yhh采纳,获得10
3秒前
DukeAn809应助KYTQQ采纳,获得40
3秒前
可爱的函函应助寒月如雪采纳,获得10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
123关闭了123文献求助
4秒前
4秒前
丁火发布了新的文献求助20
4秒前
Maestro_S应助怕黑的擎采纳,获得10
4秒前
5秒前
清风扶露发布了新的文献求助10
6秒前
乐乐应助QWER采纳,获得10
7秒前
7秒前
8秒前
Cactus应助丽莉采纳,获得10
8秒前
yuan完成签到,获得积分10
8秒前
飞天817完成签到,获得积分10
9秒前
majianzzu完成签到,获得积分10
9秒前
susuna发布了新的文献求助10
9秒前
自信天发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
汉堡包应助陈玉采纳,获得10
12秒前
谜呀发布了新的文献求助10
12秒前
Ava应助小小鱼采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426