Study of crystal properties based on attention mechanism and crystal graph convolutional neural network

过度拟合 计算机科学 带隙 卷积神经网络 图形 机器学习 材料科学 人工智能 Crystal(编程语言) 人工神经网络 深度学习 算法 模式识别(心理学) 晶体结构 拓扑(电路)
作者
Buwei wang,Qian Fan,Yunliang Yue
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
标识
DOI:10.1088/1361-648x/ac5705
摘要

Abstract The prediction of crystal properties has always been limited by huge computational costs. In recent years, the rise of machine learning methods has gradually made it possible to study crystal properties on a large scale. We propose an attention mechanism-based crystal graph convolutional neural network, which builds a machine learning model by inputting crystallographic information files and target properties. In our research, the attention mechanism is introduced in the crystal graph convolutional neural network to learn the local chemical environment, and node normalization is added to reduce the risk of overfitting. We collect structural information and calculation data of about 36,000 crystals and examine the prediction performance of the models for the formation energy, total energy, bandgap, and Fermi energy of crystals in our research. Compared with the crystal graph convolutional neural network, it is found that the accuracy of the predicted properties can be further improved to varying degrees by the introduction of the attention mechanism. Moreover, the total magnetization and bandgap can be classified under the same neural network framework. The classification accuracy of wide bandgap semiconductor crystals with a bandgap threshold of 2.3 eV reaches 93.2%, and the classification accuracy of crystals with a total magnetization threshold of 0.5 μB reaches 88.8%. The work is helpful to realize large-scale prediction and classification of crystal properties, accelerating the discovery of new functional crystal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi发布了新的文献求助10
1秒前
1秒前
3秒前
乐乐应助淡然丹秋采纳,获得10
3秒前
青春完成签到 ,获得积分10
5秒前
企鹅惜雪完成签到,获得积分20
5秒前
yiyi完成签到,获得积分10
8秒前
8秒前
陶醉怜容完成签到,获得积分10
8秒前
超帅的灭龙完成签到,获得积分10
9秒前
10秒前
企鹅惜雪发布了新的文献求助30
11秒前
善学以致用应助zym999999采纳,获得10
13秒前
逃亡的小狗完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
18秒前
淡然丹秋发布了新的文献求助10
19秒前
20秒前
SciGPT应助张成协采纳,获得10
21秒前
21秒前
liyang999完成签到 ,获得积分10
22秒前
23秒前
Ava应助简单的发夹采纳,获得10
24秒前
24秒前
充电宝应助细心的凡桃采纳,获得10
24秒前
25秒前
26秒前
研友_LBaRl8完成签到,获得积分10
26秒前
半夏完成签到,获得积分10
26秒前
酷酷朋友发布了新的文献求助10
27秒前
大胆的忆安完成签到 ,获得积分10
28秒前
所所应助wwmmyy采纳,获得10
30秒前
30秒前
30秒前
31秒前
31秒前
32秒前
FashionBoy应助ivying0209采纳,获得10
32秒前
Song0558发布了新的文献求助10
33秒前
阳光he完成签到,获得积分10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511