Study of crystal properties based on attention mechanism and crystal graph convolutional neural network

过度拟合 计算机科学 带隙 卷积神经网络 图形 机器学习 材料科学 人工智能 Crystal(编程语言) 人工神经网络 深度学习 算法 模式识别(心理学) 晶体结构 拓扑(电路)
作者
Buwei wang,Qian Fan,Yunliang Yue
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
标识
DOI:10.1088/1361-648x/ac5705
摘要

Abstract The prediction of crystal properties has always been limited by huge computational costs. In recent years, the rise of machine learning methods has gradually made it possible to study crystal properties on a large scale. We propose an attention mechanism-based crystal graph convolutional neural network, which builds a machine learning model by inputting crystallographic information files and target properties. In our research, the attention mechanism is introduced in the crystal graph convolutional neural network to learn the local chemical environment, and node normalization is added to reduce the risk of overfitting. We collect structural information and calculation data of about 36,000 crystals and examine the prediction performance of the models for the formation energy, total energy, bandgap, and Fermi energy of crystals in our research. Compared with the crystal graph convolutional neural network, it is found that the accuracy of the predicted properties can be further improved to varying degrees by the introduction of the attention mechanism. Moreover, the total magnetization and bandgap can be classified under the same neural network framework. The classification accuracy of wide bandgap semiconductor crystals with a bandgap threshold of 2.3 eV reaches 93.2%, and the classification accuracy of crystals with a total magnetization threshold of 0.5 μB reaches 88.8%. The work is helpful to realize large-scale prediction and classification of crystal properties, accelerating the discovery of new functional crystal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秉烛夜游完成签到,获得积分10
1秒前
华仔应助安an采纳,获得10
2秒前
雯雯完成签到,获得积分10
3秒前
4秒前
犹豫花卷发布了新的文献求助10
5秒前
xiaoxiaoliang发布了新的文献求助10
6秒前
7秒前
科研小虫应助dddd采纳,获得10
9秒前
书生应助橘朵方差采纳,获得10
9秒前
10秒前
10秒前
zydd发布了新的文献求助10
13秒前
VDC应助诚c采纳,获得30
13秒前
laniakea完成签到,获得积分10
16秒前
17秒前
梦璃发布了新的文献求助10
18秒前
gyl完成签到 ,获得积分10
19秒前
Jasper应助忆往昔采纳,获得10
21秒前
in应助雅玲采纳,获得20
22秒前
搜集达人应助春暖花开采纳,获得10
23秒前
科研通AI2S应助xiaoxiaoliang采纳,获得10
24秒前
VDC应助ljh626采纳,获得200
24秒前
英俊的铭应助luchong采纳,获得30
24秒前
科研通AI2S应助Mimanchi采纳,获得10
25秒前
26秒前
laoli2022完成签到,获得积分10
26秒前
27秒前
行走完成签到,获得积分10
30秒前
小秦同学发布了新的文献求助10
31秒前
Michelle发布了新的文献求助10
32秒前
科研通AI2S应助完美的海秋采纳,获得10
33秒前
wyy应助MingqingFang采纳,获得20
35秒前
36秒前
魔幻冷风完成签到,获得积分10
36秒前
BAi完成签到,获得积分10
37秒前
38秒前
orixero应助Danboard采纳,获得10
41秒前
JH_Dior关注了科研通微信公众号
41秒前
领导范儿应助dddd采纳,获得10
41秒前
春暖花开发布了新的文献求助10
44秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243751
求助须知:如何正确求助?哪些是违规求助? 2887588
关于积分的说明 8249165
捐赠科研通 2556263
什么是DOI,文献DOI怎么找? 1384394
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794