Oriented R-CNN for Object Detection

计算机科学 目标检测 人工智能 计算机视觉 模式识别(心理学)
作者
Xingxing Xie,Gong Cheng,Jiabao Wang,Xiwen Yao,Junwei Han
标识
DOI:10.1109/iccv48922.2021.00350
摘要

Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors' speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN, which is a general two-stage oriented detector with promising accuracy and efficiency. To be specific, in the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner. The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them. Without tricks, oriented R-CNN with ResNet50 achieves state-of-the-art detection accuracy on two commonly-used datasets for oriented object detection including DOTA (75.87% mAP) and HRSC2016 (96.50% mAP), while having a speed of 15.1 FPS with the image size of 1024×1024 on a single RTX 2080Ti. We hope our work could inspire rethinking the design of oriented detectors and serve as a baseline for oriented object detection. Code is available at https://github.com/jbwang1997/OBBDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ilihe应助科研通管家采纳,获得10
刚刚
ilihe应助科研通管家采纳,获得10
刚刚
刚刚
是氓呀发布了新的文献求助10
刚刚
维奈克拉应助科研通管家采纳,获得10
刚刚
spc68应助科研通管家采纳,获得20
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
xu应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
mono应助科研通管家采纳,获得10
刚刚
zhu哈哈发布了新的文献求助10
1秒前
求助人员应助科研通管家采纳,获得10
1秒前
时尚白凡完成签到 ,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
完美世界应助刘杨采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
LYX完成签到,获得积分10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
AAA应助科研通管家采纳,获得10
2秒前
林夏应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
今后应助迅速的岩采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559