Deepfake Detection: A Systematic Literature Review

计算机科学 误传 人工智能 多样性(控制论) 深度学习 质量(理念) 数据科学 机器学习 游戏娱乐 计算机安全 认识论 哲学 艺术 视觉艺术
作者
Md. Shohel Rana,Mohammad Nur Nobi,Beddhu Murali,Andrew H. Sung
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 25494-25513 被引量:208
标识
DOI:10.1109/access.2022.3154404
摘要

Over the last few decades, rapid progress in AI, machine learning, and deep learning has resulted in new techniques and various tools for manipulating multimedia. Though the technology has been mostly used in legitimate applications such as for entertainment and education, etc., malicious users have also exploited them for unlawful or nefarious purposes. For example, high-quality and realistic fake videos, images, or audios have been created to spread misinformation and propaganda, foment political discord and hate, or even harass and blackmail people. The manipulated, high-quality and realistic videos have become known recently as Deepfake. Various approaches have since been described in the literature to deal with the problems raised by Deepfake. To provide an updated overview of the research works in Deepfake detection, we conduct a systematic literature review (SLR) in this paper, summarizing 112 relevant articles from 2018 to 2020 that presented a variety of methodologies. We analyze them by grouping them into four different categories: deep learning-based techniques, classical machine learning-based methods, statistical techniques, and blockchain-based techniques. We also evaluate the performance of the detection capability of the various methods with respect to different datasets and conclude that the deep learning-based methods outperform other methods in Deepfake detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到 ,获得积分10
1秒前
SciGPT应助许起眸采纳,获得10
1秒前
1秒前
1秒前
黄bb应助帅气一刀采纳,获得10
2秒前
CMUSK发布了新的文献求助10
2秒前
CZC发布了新的文献求助10
3秒前
3秒前
大个应助sky采纳,获得10
4秒前
简祺完成签到,获得积分10
4秒前
4秒前
5秒前
天天向上完成签到 ,获得积分10
5秒前
sc发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
捣蛋发布了新的文献求助10
7秒前
斯文绯发布了新的文献求助10
8秒前
于忠波完成签到,获得积分20
8秒前
9秒前
可爱的函函应助shin0324采纳,获得10
9秒前
慕青应助CITY111119采纳,获得10
10秒前
10秒前
10秒前
Shaco完成签到,获得积分10
10秒前
科研战士发布了新的文献求助20
10秒前
南吕二七完成签到 ,获得积分10
12秒前
炙热的忆丹完成签到,获得积分10
12秒前
求文完成签到 ,获得积分10
13秒前
酷波er应助成环醚采纳,获得30
13秒前
14秒前
YHL发布了新的文献求助30
14秒前
明天过后完成签到,获得积分10
14秒前
南溪完成签到,获得积分20
15秒前
简祺发布了新的文献求助10
15秒前
AJ完成签到,获得积分10
16秒前
16秒前
柴郡喵发布了新的文献求助100
16秒前
Elaine完成签到,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400