Machine learning for atherosclerotic tissue component classification in combined near-infrared spectroscopy intravascular ultrasound imaging: Validation against histology

组织学 回声 血管内超声 医学 病理 放射科 生物医学工程 超声波
作者
Retesh Bajaj,Jeroen Eggermont,Stephanie Grainger,Lorenz Räber,Ramya Parasa,Ameer Khan,Christos Costa,Emrah Erdoğan,Michael J. Hendricks,Karthik Chandrasekharan,Mervyn Andiapen,Patrick W. Serruys,Ryo Torii,Anthony Mathur,Andreas Baumbach,Jouke Dijkstra,Christos V. Bourantas
出处
期刊:Atherosclerosis [Elsevier BV]
卷期号:345: 15-25 被引量:12
标识
DOI:10.1016/j.atherosclerosis.2022.01.021
摘要

Abstract

Background and aims

Accurate classification of plaque composition is essential for treatment planning. Intravascular ultrasound (IVUS) has limited efficacy in assessing tissue types, while near-infrared spectroscopy (NIRS) provides complementary information to IVUS but lacks depth information. The aim of this study is to train and assess the efficacy of a machine learning classifier for plaque component classification that relies on IVUS echogenicity and NIRS-signal, using histology as reference standard.

Methods

Matched NIRS-IVUS and histology images from 15 cadaveric human coronary arteries were analyzed (10 vessels were used for training and 5 for testing). Fibrous/pathological intimal thickening (F-PIT), early necrotic core (ENC), late necrotic core (LNC), and calcific tissue regions-of-interest were detected on histology and superimposed onto IVUS frames. The pixel intensities of these tissue types from the training set were used to train a J48 classifier for plaque characterization (ECHO-classification). To aid differentiation of F-PIT from necrotic cores, the NIRS-signal was used to classify non-calcific pixels outside yellow-spot regions as F-PIT (ECHO-NIRS classification). The performance of ECHO and ECHO-NIRS classifications were validated against histology.

Results

262 matched frames were included in the analysis (162 constituted the training set and 100 the test set). The pixel intensities of F-PIT and ENC were similar and thus these two tissues could not be differentiated by echogenicity. With ENC and LNC as a single class, ECHO-classification showed good agreement with histology for detecting calcific and F-PIT tissues but had poor efficacy for necrotic cores (recall 0.59 and precision 0.29). Similar results were found when F-PIT and ENC were treated as a single class (recall and precision for LNC 0.78 and 0.33, respectively). ECHO-NIRS classification improved necrotic core and LNC detection, resulting in an increase of the overall accuracy of both models, from 81.4% to 91.8%, and from 87.9% to 94.7%, respectively. Comparable performance of the two models was seen in the test set where the overall accuracy of ECHO-NIRS classification was 95.0% and 95.5%, respectively.

Conclusions

The combination of echogenicity with NIRS-signal appears capable of overcoming limitations of echogenicity, enabling more accurate characterization of plaque components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到,获得积分20
1秒前
1秒前
hym完成签到,获得积分10
1秒前
2秒前
2秒前
yang完成签到,获得积分10
3秒前
JamesPei应助愉快谷芹采纳,获得10
3秒前
温婉的笑晴完成签到,获得积分20
3秒前
3秒前
lyn发布了新的文献求助10
4秒前
阿朱完成签到,获得积分10
6秒前
twenty完成签到 ,获得积分10
6秒前
6秒前
8秒前
huang发布了新的文献求助10
8秒前
飞云发布了新的文献求助10
8秒前
margaret完成签到 ,获得积分10
8秒前
不知道取啥名完成签到,获得积分20
9秒前
刻苦小鸭子完成签到,获得积分10
9秒前
买了束花完成签到,获得积分10
9秒前
9秒前
所所应助ballball233采纳,获得10
9秒前
zz完成签到,获得积分20
10秒前
香蕉觅云应助KKKK采纳,获得10
11秒前
好运爆彭发布了新的文献求助10
11秒前
11秒前
11秒前
机智思真发布了新的文献求助10
12秒前
杭新晴完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
科研321应助张凤采纳,获得10
13秒前
zz发布了新的文献求助10
13秒前
cxzhao发布了新的文献求助10
13秒前
小二郎应助鱼咬羊采纳,获得10
13秒前
螺旋向上发布了新的文献求助30
14秒前
Tiffany完成签到,获得积分10
14秒前
开放盼海发布了新的文献求助10
14秒前
高分求助中
All the Birds of the World 3000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3719095
求助须知:如何正确求助?哪些是违规求助? 3265626
关于积分的说明 9940025
捐赠科研通 2979375
什么是DOI,文献DOI怎么找? 1634059
邀请新用户注册赠送积分活动 775549
科研通“疑难数据库(出版商)”最低求助积分说明 745686