染色质
DNA
生物
支架/基质附着区域
细胞生物学
嘉雅宠物
生物物理学
核小体
遗传学
染色质重塑
作者
Maëlle Locatelli,Josh Lawrimore,Hua Lin,Sarvath Sanaullah,Clayton Seitz,Dave Segall,Paul Kefer,Naike Salvador Moreno,Benton Lietz,Rebecca Anderson,Julia Holmes,Chongli Yuan,G. Holzwarth,Kerry Bloom,Jing Liu,Keith Bonin,Pierre‐Alexandre Vidi
标识
DOI:10.1073/pnas.2205166119
摘要
Chromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.
科研通智能强力驱动
Strongly Powered by AbleSci AI