已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors

DNA甲基化 表观遗传学 甲基化 计算机科学 计算生物学 相关性 机器学习 DNA测序 生物 人工智能 数据挖掘 遗传学 DNA 数学 基因 基因表达 几何学
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 187-200
标识
DOI:10.1007/978-1-0716-1994-0_14
摘要

Recent research studies using epigenetic data have been exploring whether it is possible to estimate how old someone is using only their DNA. This application stems from the strong correlation that has been observed in humans between the methylation status of certain DNA loci and chronological age. While genome-wide methylation sequencing has been the most prominent approach in epigenetics research, recent studies have shown that targeted sequencing of a limited number of loci can be successfully used for the estimation of chronological age from DNA samples, even when using small datasets. Following this shift, the need to investigate further into the appropriate statistics behind the predictive models used for DNA methylation-based prediction has been identified in multiple studies. This chapter will look into an example of basic data manipulation and modeling that can be applied to small DNA methylation datasets (100–400 samples) produced through targeted methylation sequencing for a small number of predictors (10–25 methylation sites). Data manipulation will focus on converting the obtained methylation values for the different predictors to a statistically meaningful dataset, followed by a basic introduction into importing such datasets in R, as well as randomizing and splitting into appropriate training and test sets for modeling. Finally, a basic introduction to R modeling will be outlined, starting with feature selection algorithms and continuing with a simple modeling example (linear model) as well as a more complex algorithm (Support Vector Machine).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Nian发布了新的文献求助10
3秒前
YY发布了新的文献求助10
4秒前
5秒前
王磊完成签到 ,获得积分10
8秒前
8秒前
yi只熊完成签到,获得积分20
9秒前
简单雨柏完成签到,获得积分10
10秒前
yi只熊发布了新的文献求助20
13秒前
Kylin完成签到,获得积分10
15秒前
17秒前
18秒前
18秒前
赘婿应助yi只熊采纳,获得20
21秒前
Alex应助科研通管家采纳,获得20
22秒前
gkads应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
火火发布了新的文献求助10
22秒前
Trinka完成签到,获得积分10
24秒前
JamesPei应助zhuxiaoyue采纳,获得10
25秒前
顺心的笑珊完成签到,获得积分10
28秒前
羞涩的傲菡完成签到,获得积分10
32秒前
34秒前
脑洞疼应助顺心的笑珊采纳,获得10
35秒前
39秒前
冷艳的语雪完成签到 ,获得积分10
40秒前
Amelie完成签到 ,获得积分10
41秒前
songshuyu完成签到,获得积分10
43秒前
沧海静音发布了新的文献求助10
43秒前
44秒前
浮游应助Hector采纳,获得10
48秒前
ZB完成签到,获得积分10
49秒前
科研通AI6应助尊敬的便当采纳,获得10
50秒前
dadadsad完成签到,获得积分10
53秒前
54秒前
kentonchow应助mmyhn采纳,获得30
54秒前
54秒前
三泥完成签到,获得积分10
58秒前
麦乐酷发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525110
关于积分的说明 14101161
捐赠科研通 4438888
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406528