Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors

DNA甲基化 表观遗传学 甲基化 计算机科学 计算生物学 相关性 机器学习 DNA测序 生物 人工智能 数据挖掘 遗传学 DNA 数学 基因 基因表达 几何学
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 187-200
标识
DOI:10.1007/978-1-0716-1994-0_14
摘要

Recent research studies using epigenetic data have been exploring whether it is possible to estimate how old someone is using only their DNA. This application stems from the strong correlation that has been observed in humans between the methylation status of certain DNA loci and chronological age. While genome-wide methylation sequencing has been the most prominent approach in epigenetics research, recent studies have shown that targeted sequencing of a limited number of loci can be successfully used for the estimation of chronological age from DNA samples, even when using small datasets. Following this shift, the need to investigate further into the appropriate statistics behind the predictive models used for DNA methylation-based prediction has been identified in multiple studies. This chapter will look into an example of basic data manipulation and modeling that can be applied to small DNA methylation datasets (100–400 samples) produced through targeted methylation sequencing for a small number of predictors (10–25 methylation sites). Data manipulation will focus on converting the obtained methylation values for the different predictors to a statistically meaningful dataset, followed by a basic introduction into importing such datasets in R, as well as randomizing and splitting into appropriate training and test sets for modeling. Finally, a basic introduction to R modeling will be outlined, starting with feature selection algorithms and continuing with a simple modeling example (linear model) as well as a more complex algorithm (Support Vector Machine).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ypp完成签到,获得积分10
1秒前
2秒前
叫什么都行完成签到 ,获得积分10
3秒前
3秒前
6秒前
zqhan完成签到,获得积分20
6秒前
瘦瘦安梦完成签到,获得积分10
8秒前
WWY完成签到,获得积分10
8秒前
Ther1111完成签到,获得积分20
9秒前
RR完成签到 ,获得积分10
9秒前
xshzhou完成签到,获得积分10
10秒前
yoyo完成签到 ,获得积分10
10秒前
JIMS完成签到,获得积分10
11秒前
科研丁真发布了新的文献求助10
11秒前
若冰发布了新的文献求助10
12秒前
桐桐应助YFL采纳,获得10
13秒前
Orange应助yty采纳,获得10
13秒前
Joshua发布了新的文献求助10
14秒前
pink完成签到,获得积分20
14秒前
顺利山柏完成签到,获得积分10
15秒前
打打应助zykk采纳,获得10
15秒前
16秒前
胡桃完成签到 ,获得积分10
16秒前
091完成签到 ,获得积分10
17秒前
17秒前
李想发布了新的文献求助10
18秒前
KYTYYDS发布了新的文献求助200
18秒前
北陌完成签到,获得积分10
19秒前
万能图书馆应助远方采纳,获得10
19秒前
吞吞完成签到,获得积分10
20秒前
cy完成签到,获得积分10
21秒前
完美的水杯完成签到 ,获得积分10
21秒前
jiulei完成签到,获得积分10
21秒前
tt完成签到,获得积分10
22秒前
有信心完成签到 ,获得积分10
24秒前
uwu关闭了uwu文献求助
24秒前
25秒前
26秒前
26秒前
刘慧完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080