Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors

DNA甲基化 表观遗传学 甲基化 计算机科学 计算生物学 相关性 机器学习 DNA测序 生物 人工智能 数据挖掘 遗传学 DNA 数学 基因 基因表达 几何学
出处
期刊:Methods in molecular biology 卷期号:: 187-200
标识
DOI:10.1007/978-1-0716-1994-0_14
摘要

Recent research studies using epigenetic data have been exploring whether it is possible to estimate how old someone is using only their DNA. This application stems from the strong correlation that has been observed in humans between the methylation status of certain DNA loci and chronological age. While genome-wide methylation sequencing has been the most prominent approach in epigenetics research, recent studies have shown that targeted sequencing of a limited number of loci can be successfully used for the estimation of chronological age from DNA samples, even when using small datasets. Following this shift, the need to investigate further into the appropriate statistics behind the predictive models used for DNA methylation-based prediction has been identified in multiple studies. This chapter will look into an example of basic data manipulation and modeling that can be applied to small DNA methylation datasets (100–400 samples) produced through targeted methylation sequencing for a small number of predictors (10–25 methylation sites). Data manipulation will focus on converting the obtained methylation values for the different predictors to a statistically meaningful dataset, followed by a basic introduction into importing such datasets in R, as well as randomizing and splitting into appropriate training and test sets for modeling. Finally, a basic introduction to R modeling will be outlined, starting with feature selection algorithms and continuing with a simple modeling example (linear model) as well as a more complex algorithm (Support Vector Machine).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yduan完成签到,获得积分10
4秒前
4秒前
万能图书馆应助Molly采纳,获得10
5秒前
5秒前
毛豆爸爸应助诚c采纳,获得10
6秒前
爆米花应助liangmh采纳,获得10
9秒前
SADHIASK发布了新的文献求助10
9秒前
李健的小迷弟应助wzyyyyy采纳,获得10
10秒前
科研通AI2S应助kjding采纳,获得10
11秒前
小赖皮猪完成签到 ,获得积分10
12秒前
晨~完成签到,获得积分10
14秒前
NexusExplorer应助狸追采纳,获得10
14秒前
14秒前
内向翰应助老火采纳,获得10
14秒前
Peng完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
SADHIASK完成签到,获得积分10
19秒前
汉堡包应助xinjiasuki采纳,获得10
21秒前
wzyyyyy发布了新的文献求助10
21秒前
liangmh发布了新的文献求助10
21秒前
22秒前
22秒前
25秒前
疯狂的师完成签到,获得积分10
27秒前
小小完成签到,获得积分10
28秒前
在水一方应助宋德智采纳,获得10
30秒前
斯文败类应助邓生采纳,获得10
30秒前
研究畜发布了新的文献求助10
31秒前
Lucas应助微笑的语芙采纳,获得10
31秒前
三石完成签到 ,获得积分10
32秒前
fanmo完成签到 ,获得积分10
34秒前
略略略完成签到,获得积分10
37秒前
38秒前
38秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291