Predicting Chronological Age from DNA Methylation Data: A Machine Learning Approach for Small Datasets and Limited Predictors

DNA甲基化 表观遗传学 甲基化 计算机科学 计算生物学 相关性 机器学习 DNA测序 生物 人工智能 数据挖掘 遗传学 DNA 数学 基因 基因表达 几何学
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 187-200
标识
DOI:10.1007/978-1-0716-1994-0_14
摘要

Recent research studies using epigenetic data have been exploring whether it is possible to estimate how old someone is using only their DNA. This application stems from the strong correlation that has been observed in humans between the methylation status of certain DNA loci and chronological age. While genome-wide methylation sequencing has been the most prominent approach in epigenetics research, recent studies have shown that targeted sequencing of a limited number of loci can be successfully used for the estimation of chronological age from DNA samples, even when using small datasets. Following this shift, the need to investigate further into the appropriate statistics behind the predictive models used for DNA methylation-based prediction has been identified in multiple studies. This chapter will look into an example of basic data manipulation and modeling that can be applied to small DNA methylation datasets (100–400 samples) produced through targeted methylation sequencing for a small number of predictors (10–25 methylation sites). Data manipulation will focus on converting the obtained methylation values for the different predictors to a statistically meaningful dataset, followed by a basic introduction into importing such datasets in R, as well as randomizing and splitting into appropriate training and test sets for modeling. Finally, a basic introduction to R modeling will be outlined, starting with feature selection algorithms and continuing with a simple modeling example (linear model) as well as a more complex algorithm (Support Vector Machine).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星九完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
百招发布了新的文献求助20
2秒前
2秒前
Rainy发布了新的文献求助10
2秒前
wyling完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
petrichor完成签到,获得积分10
4秒前
执着艳发布了新的文献求助10
5秒前
叮叮叮铛完成签到,获得积分10
5秒前
喔喔完成签到,获得积分10
5秒前
5秒前
科研小白发布了新的文献求助10
5秒前
zys发布了新的文献求助10
6秒前
6秒前
好困发布了新的文献求助10
7秒前
隐形曼青应助cdk采纳,获得10
7秒前
Hello应助cdk采纳,获得10
7秒前
8秒前
8秒前
8秒前
顾矜应助zt采纳,获得10
8秒前
jason完成签到 ,获得积分10
10秒前
斧王应助科研通管家采纳,获得100
10秒前
寒生发布了新的文献求助10
10秒前
阳光的小土豆完成签到,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
对对对完成签到 ,获得积分10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593