Temporal Graph Networks for Deep Learning on Dynamic Graphs

计算机科学 理论计算机科学 深度学习 人工智能 图形 分类 机器学习 情报检索
作者
Emanuele Rossi,Ben Chamberlain,Fabrizio Frasca,Davide Eynard,Federico Monti,Michael M. Bronstein
出处
期刊:Cornell University - arXiv 被引量:235
标识
DOI:10.48550/arxiv.2006.10637
摘要

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Jasper应助随影采纳,获得10
1秒前
jiunuan应助天才包采纳,获得30
2秒前
2秒前
深情安青应助无聊的新波采纳,获得10
2秒前
希遇安发布了新的文献求助10
2秒前
77qoq完成签到 ,获得积分20
3秒前
KUN发布了新的文献求助10
3秒前
wanx-完成签到,获得积分20
3秒前
桐桐应助Mtoc采纳,获得10
4秒前
无花果应助和谐的饼干采纳,获得50
4秒前
英俊的铭应助deletelzr采纳,获得10
4秒前
4秒前
完美世界应助racill采纳,获得10
4秒前
5秒前
abu完成签到,获得积分10
5秒前
5秒前
无限符号完成签到,获得积分10
5秒前
科研通AI6应助zhenqiqin采纳,获得10
6秒前
好奇宝宝发布了新的文献求助10
6秒前
wanx-发布了新的文献求助80
7秒前
汉堡包应助渊_采纳,获得10
8秒前
8秒前
jianlong0206完成签到 ,获得积分10
8秒前
默默犀牛完成签到 ,获得积分10
8秒前
清爽安青发布了新的文献求助10
8秒前
8秒前
9秒前
南风不竞发布了新的文献求助10
9秒前
JamesPei应助可可豆战士采纳,获得10
10秒前
浮游应助芝士采纳,获得10
10秒前
jiunuan应助芝士采纳,获得10
10秒前
顾矜应助芝士采纳,获得10
10秒前
香蕉觅云应助wzg666采纳,获得10
10秒前
12秒前
脑洞疼应助77qoq采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
wwwwc发布了新的文献求助10
12秒前
xuqiansd发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937