重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Temporal Graph Networks for Deep Learning on Dynamic Graphs

计算机科学 理论计算机科学 深度学习 人工智能 图形 分类 机器学习 情报检索
作者
Emanuele Rossi,Ben Chamberlain,Fabrizio Frasca,Davide Eynard,Federico Monti,Michael M. Bronstein
出处
期刊:Cornell University - arXiv 被引量:235
标识
DOI:10.48550/arxiv.2006.10637
摘要

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼坤完成签到 ,获得积分10
刚刚
行7发布了新的文献求助10
刚刚
刘一安发布了新的文献求助10
1秒前
Jasper应助不许焦绿o采纳,获得10
1秒前
RSC发布了新的文献求助10
2秒前
huoyunli完成签到,获得积分20
2秒前
2秒前
gezid完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
chamberlain完成签到,获得积分10
3秒前
Yy1331完成签到,获得积分20
4秒前
4秒前
细心水绿完成签到,获得积分10
4秒前
5秒前
科研通AI6应助哈哈哈哈采纳,获得10
5秒前
5秒前
1QQ完成签到 ,获得积分20
5秒前
菠萝吹雪花啤完成签到 ,获得积分10
5秒前
7788完成签到,获得积分10
5秒前
5秒前
珍珍害怕打真真完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
大胆半莲发布了新的文献求助10
6秒前
Li完成签到,获得积分10
6秒前
huoyunli发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
liuhaha发布了新的文献求助10
8秒前
Yy1331发布了新的文献求助10
8秒前
细心水绿发布了新的文献求助10
9秒前
9秒前
fvsuar完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467386
求助须知:如何正确求助?哪些是违规求助? 4571127
关于积分的说明 14328830
捐赠科研通 4497699
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452910
关于科研通互助平台的介绍 1427654