A hybrid attention-based deep learning approach for wind power prediction

深度学习 计算机科学 人工智能 机器学习 风力发电 工程类 电气工程
作者
Zhengjing Ma,Gang Mei
出处
期刊:Applied Energy [Elsevier]
卷期号:323: 119608-119608 被引量:73
标识
DOI:10.1016/j.apenergy.2022.119608
摘要

Renewable energy, especially wind power, is a practicable and promising solution to mitigate the existing dilemma associated with climate change. Efficient and accurate prediction of wind power could guide a variety of decisions for resource management. To improve the accuracy of wind power prediction, most existing studies are multistage, where signal processing methods are first employed to decompose a single time series, and then deep learning methods are utilized for prediction. The aforementioned approaches have shown satisfactory results but tend to involve a burdensome time series decomposition process. To address this problem, this paper proposes a hybrid attention-based deep learning approach to achieve more efficient and accurate wind power prediction. The essential idea behind the proposed approach is to incorporate the cumbersome decomposition process into a hybrid deep learning model consisting of different deep neural networks, where each deep neural network is designed to perform a specific part of the prediction task to maximize its corresponding advantages. Compared with the typical deep learning models for time series prediction, e.g., long short-term memory (LSTM) and gated recurrent units (GRU), the proposed deep learning model has the following two major advantages: (1) the model eliminates the time series decomposition process by time embedding layers to achieve efficient prediction, and (2) the model achieves more powerful high-level temporal feature extraction by leveraging the combination of a convolutional neural network (CNN), multiple stacked bidirectional long short-term memory (Bi-LSTM) networks, and the attention mechanism, thus providing high accuracy prediction. The proposed method is evaluated with a real-world wind power dataset in Turkey, and comparative experiments demonstrate the effectiveness and applicability of the proposed method. • A hybrid attention-based deep learning model was developed for wind power prediction. • The time embedding layer improves the accuracy and efficiency of the prediction. • The combination of two deep neural networks improves the prediction accuracy. • An attention mechanism reduces the loss of information. • The predicted results are well consistent with the observed dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王二虎完成签到,获得积分10
2秒前
王讯完成签到,获得积分10
6秒前
劲秉应助阿梅梅梅采纳,获得10
6秒前
shuangZ完成签到,获得积分20
8秒前
共享精神应助溪风采纳,获得10
12秒前
末排差生完成签到,获得积分0
12秒前
张歌完成签到 ,获得积分10
15秒前
22秒前
爱学习的小张完成签到 ,获得积分10
24秒前
25秒前
蚊香液完成签到 ,获得积分20
26秒前
烟花应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
快乐滑板应助科研通管家采纳,获得10
28秒前
28秒前
快乐滑板应助科研通管家采纳,获得10
28秒前
子车茗应助科研通管家采纳,获得20
28秒前
kingwill应助科研通管家采纳,获得20
28秒前
29秒前
快乐滑板应助科研通管家采纳,获得10
29秒前
30秒前
你好完成签到,获得积分10
31秒前
多喝温水完成签到 ,获得积分10
33秒前
lc完成签到 ,获得积分10
34秒前
你好发布了新的文献求助10
34秒前
英姑应助djbj2022采纳,获得10
36秒前
Zheng完成签到,获得积分10
36秒前
38秒前
科研通AI2S应助小泓采纳,获得10
39秒前
Zheng发布了新的文献求助10
41秒前
劲秉应助蚊香液采纳,获得10
42秒前
43秒前
66完成签到,获得积分10
43秒前
46秒前
djbj2022发布了新的文献求助10
48秒前
GL_001发布了新的文献求助10
52秒前
劲秉应助reflux采纳,获得10
52秒前
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352562
求助须知:如何正确求助?哪些是违规求助? 2977604
关于积分的说明 8680602
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709