A hybrid attention-based deep learning approach for wind power prediction

深度学习 计算机科学 人工智能 机器学习 风力发电 工程类 电气工程
作者
Zhengjing Ma,Gang Mei
出处
期刊:Applied Energy [Elsevier BV]
卷期号:323: 119608-119608 被引量:73
标识
DOI:10.1016/j.apenergy.2022.119608
摘要

Renewable energy, especially wind power, is a practicable and promising solution to mitigate the existing dilemma associated with climate change. Efficient and accurate prediction of wind power could guide a variety of decisions for resource management. To improve the accuracy of wind power prediction, most existing studies are multistage, where signal processing methods are first employed to decompose a single time series, and then deep learning methods are utilized for prediction. The aforementioned approaches have shown satisfactory results but tend to involve a burdensome time series decomposition process. To address this problem, this paper proposes a hybrid attention-based deep learning approach to achieve more efficient and accurate wind power prediction. The essential idea behind the proposed approach is to incorporate the cumbersome decomposition process into a hybrid deep learning model consisting of different deep neural networks, where each deep neural network is designed to perform a specific part of the prediction task to maximize its corresponding advantages. Compared with the typical deep learning models for time series prediction, e.g., long short-term memory (LSTM) and gated recurrent units (GRU), the proposed deep learning model has the following two major advantages: (1) the model eliminates the time series decomposition process by time embedding layers to achieve efficient prediction, and (2) the model achieves more powerful high-level temporal feature extraction by leveraging the combination of a convolutional neural network (CNN), multiple stacked bidirectional long short-term memory (Bi-LSTM) networks, and the attention mechanism, thus providing high accuracy prediction. The proposed method is evaluated with a real-world wind power dataset in Turkey, and comparative experiments demonstrate the effectiveness and applicability of the proposed method. • A hybrid attention-based deep learning model was developed for wind power prediction. • The time embedding layer improves the accuracy and efficiency of the prediction. • The combination of two deep neural networks improves the prediction accuracy. • An attention mechanism reduces the loss of information. • The predicted results are well consistent with the observed dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的又晴完成签到,获得积分10
1秒前
行毅文完成签到,获得积分10
1秒前
1秒前
李健的小迷弟应助Guo5082采纳,获得10
2秒前
FashionBoy应助小马过河采纳,获得10
2秒前
小可爱发布了新的文献求助10
3秒前
iNk应助liujinjin采纳,获得10
3秒前
xyqy完成签到,获得积分10
4秒前
5秒前
5秒前
lijianguo发布了新的文献求助10
5秒前
6秒前
miaoww发布了新的文献求助10
6秒前
yxb完成签到,获得积分10
7秒前
无算浮白完成签到,获得积分10
8秒前
Mark完成签到,获得积分10
8秒前
9秒前
9秒前
hang完成签到,获得积分10
9秒前
10秒前
10秒前
mmmz完成签到,获得积分10
10秒前
cai白白发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
阿哲完成签到,获得积分10
11秒前
虚幻梦寒完成签到,获得积分10
12秒前
隐形曼青应助xyqy采纳,获得10
12秒前
lilysmile001完成签到,获得积分10
12秒前
chaobada完成签到,获得积分10
12秒前
我唉科研完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
SimonShaw完成签到,获得积分10
15秒前
15秒前
曾泳钧完成签到,获得积分10
16秒前
wjh发布了新的文献求助10
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《模拟电子技术基础:系统方法》 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011633
求助须知:如何正确求助?哪些是违规求助? 3551418
关于积分的说明 11308628
捐赠科研通 3285620
什么是DOI,文献DOI怎么找? 1811122
邀请新用户注册赠送积分活动 886781
科研通“疑难数据库(出版商)”最低求助积分说明 811653