作者
Liyan Yu,Hongguang Liu,Xiaoxia Ma,Vidya Devanathadesikan Seshadri,Xuan Gao
摘要
The major cause of death worldwide is atherosclerosis-related cardiovascular disease (ACD). Myrtenal was studied to determine control rats were given standard diets and a high-fat diet was given to AS model groups. Atherosclerosis-related cardiovascular disease (ACD) is globally attributed to being a predominant cause of mortality. While the beneficial effects of Myrtenal, the monoterpene from natural compounds, are increasingly being acknowledged, its anti-atherosclerotic activity has not been demonstrated clearly. The present study is proposed to determine the anti-atherosclerotic activity of Myrtenal in high-fat diet-induced atherosclerosis (AS) rat models. Control groups were maintained with standard diets, the AS model rats were provided a high-fat diet, two of the experimental groups fed with a high-fat diet were treated with Myrtenal (50 mg/kg and 100 mg/kg), and one experimental group on high-fat diet was treated with simvastatin (10 mg/kg) for 30 days. The levels of inflammatory cytokines were analyzed using kits. The lipoproteins and the lipid profile were estimated using an auto-analyzer. The atherogenic index and marker enzyme activities were also determined. Serum concentrations of 6-keto-prostaglandin F1α (6-keto-PGF1α), thromboxaneB2 (TXB2), endothelin (ET), and nitric oxide (NO) were measured. The AS model groups indicated altered lipid profile, lipoprotein content, atherogenic index, calcium levels, HMG-CoA reductase activity, collagen level, and mild mineralization indicating atherosclerosis, while the AS-induced Myrtenal-treated groups demonstrated anti-atherogenic activity. The Myrtenal-treated groups exhibited a decreased TC, TG, and LDLc levels; increased HDLc levels; and a decline in the inflammatory cytokines such as CRP, IL-1β, IL-8, and IL-18 when compared to the untreated AS rats. Furthermore, Myrtenal decreased ET, TXB2, and 6-keto-PGF1α levels indicating its anti-atherosclerotic activity. The study results thus indicate that Myrtenal modulates the lipid metabolic pathway to exert its anti-atherosclerotic activity.