材料科学
电催化剂
面(心理学)
催化作用
拉伤
纳米颗粒
密度泛函理论
氧气
化学工程
吸收光谱法
吸附
纳米技术
金属
电化学
电极
计算化学
物理化学
物理
量子力学
冶金
五大性格特征
人格
化学
有机化学
工程类
内科学
社会心理学
医学
生物化学
心理学
作者
Yuan Yang,Qing Zhang,Lin Yang,Liguang Wang,Wenbo Shi,Pengfei Liu,Rui Gao,Lirong Zheng,Zhongwei Chen,Zhengyu Bai
标识
DOI:10.1002/adfm.202206081
摘要
Abstract Increasing the portion of highly active metal centers in atomically dispersed MNC catalysts is significant for the overall oxygen reduction reaction (ORR) performance. A “facet strain strategy” is designed by using a trans‐layer compressive strain of the {110} facet of FeCo nanoparticles encapsulated in graphitic FeNC layers to further activate the primitive FeN 4 catalytic centers on the graphitic sub‐layer that are omitted in commonly direct access activation strategies. Using X‐ray absorption near‐edge spectroscopy and extended X‐ray absorption fine structure, the highly active FeN 4 type is detected with compressed FeN bonds. Density functional theory calculation discloses that, in virtue of lattice mismatch, FeCo {110} facets transmit a trans‐layer compressive strain to reconstruct the FeN 4 sites on surrounding graphitic sub‐layers to optimize the Fe‐OH* adsorption energy in the rate‐determining step. The redesigned catalyst exhibits enhanced ORR activity, outperforming the primitive FeNC and commercial Pt/C benchmarks. This study will enrich insights toward developing MN 4 and nanoparticle composite electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI