A hierarchical solution evaluation method and a hybrid algorithm for the vehicle routing problem with drones and multiple visits

无人机 计算机科学 旅行商问题 有效载荷(计算) 车辆路径问题 卡车 启发式 布线(电子设计自动化) 数学优化 算法 网络数据包 数学 工程类 计算机网络 嵌入式系统 人工智能 汽车工程 遗传学 生物
作者
Ruixue Gu,Mark Poon,Zhihao Luo,Yang Liu,Bai Li
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:141: 103733-103733 被引量:36
标识
DOI:10.1016/j.trc.2022.103733
摘要

Vehicle routing problem with drones (VRPD) has recently gained much traction among the research community due to its potential to improve efficiency and reduce costs for delivery. However, limited research investigates feasibility evaluation methods for the VRPD due to complex synchronization requirements between truck routes and drone trips. This paper proposes an efficient hierarchical solution evaluation method for a general VRPD problem with multiple visits (VRPD-MV), in which each vehicle is equipped with a single drone capable of serving multiple customers per trip. The endurance model is based on both the payload and flight time of the drone. The solution evaluation method decomposes a combined truck–drone route into its constituent truck segment and drone segment, which are collectively recognized as a route segment. Thereafter, efficient processing methods are developed for each segment type. We hybridize an iterative local search heuristic with a variable neighborhood descent procedure (ILS-VND) to solve the VRPD-MV. The algorithm obtains promising computational results in reasonable times for the VRPD-MV. Specifically, the proposed evaluation method is shown to accelerate the feasibility evaluation of a solution and reduce the time complexity to O(1) independent of the length of the route. The computational results also show a positive impact of powerful drones on reducing solution costs. Lastly, the ILS-VND outperforms a state-of-the-art algorithm on the multi-visit traveling salesman problem with multi-drones in terms of both solution qualities and computational times required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gasol完成签到 ,获得积分10
刚刚
斯文败类应助SCO采纳,获得10
刚刚
2秒前
2秒前
2秒前
星辰大海应助emm采纳,获得10
3秒前
3秒前
4秒前
5秒前
6秒前
6秒前
6秒前
zhangfuchao完成签到,获得积分10
6秒前
风中冰香发布了新的文献求助10
6秒前
6秒前
7秒前
邹yang完成签到 ,获得积分10
7秒前
Ayaka完成签到,获得积分10
7秒前
Jasper应助纪你巴采纳,获得10
7秒前
7秒前
7秒前
LeeWX完成签到,获得积分10
7秒前
8秒前
8秒前
星辰大海应助Cx270采纳,获得10
8秒前
8秒前
Youth发布了新的文献求助10
8秒前
kiki发布了新的文献求助10
9秒前
ZYW发布了新的文献求助20
9秒前
9秒前
LeeWX发布了新的文献求助10
10秒前
大卉卉完成签到,获得积分10
10秒前
10秒前
10秒前
石豪有发布了新的文献求助10
11秒前
多伶俐发布了新的文献求助10
11秒前
可爱的函函应助克诺尔普采纳,获得10
11秒前
Lucas应助克诺尔普采纳,获得10
11秒前
小蘑菇应助魔幻芒果采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218