Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation

分割 人工智能 计算机科学 全自动 Sørensen–骰子系数 深度学习 计算机视觉 模式识别(心理学) 图像分割 活动轮廓模型 机械工程 工程类
作者
S. Ciyamala Kushbu,T. M. Inbamalar
出处
期刊:Journal of Medical Imaging and Health Informatics [American Scientific Publishers]
卷期号:12 (2): 112-122 被引量:3
标识
DOI:10.1166/jmihi.2022.3927
摘要

Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm, namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles of CMRI than previous methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬小丸子完成签到 ,获得积分20
1秒前
1秒前
3秒前
SYLH应助司阔林采纳,获得10
3秒前
4秒前
5秒前
ohnk发布了新的文献求助10
6秒前
青水完成签到 ,获得积分10
6秒前
7秒前
小蘑菇应助UP采纳,获得10
9秒前
xiao发布了新的文献求助10
10秒前
ceeray23应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
专注水杯应助科研通管家采纳,获得20
11秒前
ceeray23应助科研通管家采纳,获得50
11秒前
司阔林完成签到,获得积分10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
12秒前
朱华彪完成签到,获得积分10
13秒前
Jasper应助任伟超采纳,获得30
14秒前
JK157发布了新的文献求助10
16秒前
16秒前
凉拌土豆芽完成签到,获得积分10
17秒前
JJ发布了新的文献求助10
17秒前
傻傻的听安完成签到,获得积分10
17秒前
17秒前
白白完成签到,获得积分10
20秒前
不安的元霜完成签到,获得积分10
21秒前
23秒前
24秒前
英姑应助净水涟漪采纳,获得30
26秒前
JJ完成签到,获得积分10
26秒前
Ll_l完成签到,获得积分10
27秒前
yuyu完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082384
捐赠科研通 3226938
什么是DOI,文献DOI怎么找? 1784076
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801069