Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation

分割 人工智能 计算机科学 全自动 Sørensen–骰子系数 深度学习 计算机视觉 模式识别(心理学) 图像分割 活动轮廓模型 机械工程 工程类
作者
S. Ciyamala Kushbu,T. M. Inbamalar
出处
期刊:Journal of Medical Imaging and Health Informatics [American Scientific Publishers]
卷期号:12 (2): 112-122 被引量:3
标识
DOI:10.1166/jmihi.2022.3927
摘要

Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm, namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles of CMRI than previous methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0701发布了新的文献求助10
刚刚
1秒前
yyds发布了新的文献求助30
3秒前
3秒前
Fitz完成签到,获得积分10
3秒前
游一发布了新的文献求助10
4秒前
慕青应助seanx采纳,获得10
4秒前
4秒前
雨中小王应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
5秒前
雨中小王应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得200
5秒前
李健应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
Pendragon发布了新的文献求助10
6秒前
6秒前
6秒前
魔法少女猪壮壮完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
星期五完成签到,获得积分10
8秒前
阁主完成签到,获得积分10
9秒前
传奇3应助dd采纳,获得10
9秒前
乐乐应助汤婆婆采纳,获得10
10秒前
苹果亦巧完成签到,获得积分10
10秒前
....完成签到 ,获得积分10
10秒前
严婉蓉完成签到 ,获得积分10
10秒前
11秒前
Genius发布了新的文献求助10
11秒前
科目三应助66采纳,获得10
11秒前
FashionBoy应助berg采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497