Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation

分割 人工智能 计算机科学 全自动 Sørensen–骰子系数 深度学习 计算机视觉 模式识别(心理学) 图像分割 活动轮廓模型 机械工程 工程类
作者
S. Ciyamala Kushbu,T. M. Inbamalar
出处
期刊:Journal of Medical Imaging and Health Informatics [American Scientific Publishers]
卷期号:12 (2): 112-122 被引量:3
标识
DOI:10.1166/jmihi.2022.3927
摘要

Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm, namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles of CMRI than previous methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助ssy采纳,获得10
刚刚
斯文败类应助稳重诗珊采纳,获得10
1秒前
1秒前
传奇3应助尊敬的毛豆采纳,获得10
1秒前
2秒前
2秒前
第七个星球完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
桐桐应助季世坤采纳,获得10
4秒前
浮游应助yy采纳,获得10
4秒前
5秒前
LL关闭了LL文献求助
5秒前
科研通AI5应助冷静无心采纳,获得10
6秒前
xiaojinyu完成签到 ,获得积分10
6秒前
6秒前
7秒前
jinyu完成签到,获得积分10
7秒前
豆子发布了新的文献求助10
8秒前
8秒前
i7发布了新的文献求助10
8秒前
frank发布了新的文献求助10
8秒前
开放念云完成签到,获得积分20
9秒前
9秒前
复成发布了新的文献求助10
9秒前
9秒前
wangchaofk完成签到,获得积分10
9秒前
zhangzy发布了新的文献求助10
9秒前
Green发布了新的文献求助10
10秒前
Gamen完成签到,获得积分20
10秒前
guli完成签到,获得积分10
10秒前
10秒前
vothuong完成签到,获得积分10
10秒前
My发布了新的文献求助10
11秒前
定西完成签到,获得积分10
11秒前
11秒前
xuyang完成签到,获得积分10
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262