Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation

分割 人工智能 计算机科学 全自动 Sørensen–骰子系数 深度学习 计算机视觉 模式识别(心理学) 图像分割 活动轮廓模型 机械工程 工程类
作者
S. Ciyamala Kushbu,T. M. Inbamalar
出处
期刊:Journal of Medical Imaging and Health Informatics [American Scientific Publishers]
卷期号:12 (2): 112-122 被引量:3
标识
DOI:10.1166/jmihi.2022.3927
摘要

Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm, namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles of CMRI than previous methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助dsd采纳,获得10
1秒前
lineduck完成签到,获得积分10
2秒前
共享精神应助没头脑采纳,获得10
2秒前
tong_77完成签到,获得积分10
2秒前
3秒前
Saureus完成签到,获得积分10
3秒前
王富贵完成签到,获得积分10
3秒前
ephore应助zuozuo采纳,获得30
4秒前
diraczh完成签到,获得积分10
5秒前
5秒前
yy发布了新的文献求助10
6秒前
优美滑板发布了新的文献求助10
6秒前
喵喵大王完成签到,获得积分10
7秒前
shann发布了新的文献求助100
8秒前
9秒前
赘婿应助陈阳采纳,获得10
9秒前
9秒前
10秒前
研友_VZG7GZ应助兜兜采纳,获得10
11秒前
12秒前
12秒前
优雅鹏煊完成签到,获得积分10
13秒前
14秒前
Mayday完成签到,获得积分10
15秒前
乐观芷蕊发布了新的文献求助10
15秒前
妮妮完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
单纯手套111完成签到,获得积分10
15秒前
赘婿应助brucehekai采纳,获得10
15秒前
16秒前
Gusta发布了新的文献求助10
16秒前
17秒前
风中夜天完成签到 ,获得积分10
18秒前
JamesPei应助lufei采纳,获得10
18秒前
18秒前
桐桐应助ju龙哥采纳,获得10
18秒前
孙行者完成签到,获得积分10
18秒前
Lucas应助科研通管家采纳,获得10
19秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334604
求助须知:如何正确求助?哪些是违规求助? 2963829
关于积分的说明 8611528
捐赠科研通 2642741
什么是DOI,文献DOI怎么找? 1446956
科研通“疑难数据库(出版商)”最低求助积分说明 670445
邀请新用户注册赠送积分活动 658656