Merging Clinical and EEG Biomarkers in an Elastic-Net Regression for Disorder of Consciousness Prognosis Prediction

脑电图 清醒 持续植物状态 最小意识状态 意识水平 彗差(光学) 人工智能 意识 格拉斯哥昏迷指数 计算机科学 医学 机器学习 心理学 精神科 麻醉 神经科学 物理 光学
作者
Piergiuseppe Liuzzi,Antonello Grippo,Silvia Campagnini,Maenia Scarpino,Francesca Draghi,Anna Maria Romoli,Bahia Hakiki,Raisa Sterpu,Antonio Maiorelli,Claudio Macchi,Francesca Cecchi,Maria Chiara Carrozza,Andrea Mannini
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 1504-1513 被引量:19
标识
DOI:10.1109/tnsre.2022.3178801
摘要

Patients with Disorder of Consciousness (DoC) entering Intensive Rehabilitation Units after a severe Acquired Brain Injury have a highly variable evolution of the state of consciousness which is a complex aspect to predict. Besides clinical factors, electroencephalography has clearly shown its potential into the identification of prognostic biomarkers of consciousness recovery. In this retrospective study, with a dataset of 271 patients with DoC, we proposed three different Elastic-Net regressors trained on different datasets to predict the Coma Recovery Scale-Revised value at discharge based on data collected at admission. One dataset was completely EEG-based, one solely clinical data-based and the last was composed by the union of the two. Each model was optimized, validated and tested with a robust nested cross-validation pipeline. The best models resulted in a median absolute test error of 4.54 [IQR = 4.56], 3.39 [IQR = 4.36], 3.16 [IQR = 4.13] for respectively the EEG, clinical and hybrid model. Furthermore, the hybrid model for what concerns overcoming an unresponsive wakefulness state and exiting a DoC results in an AUC of 0.91 and 0.88 respectively. Small but useful improvements are added by the EEG dataset to the clinical model for what concerns overcoming an unresponsive wakefulness state. Data-driven techniques and namely, machine learning models are hereby shown to be capable of supporting the complex decision-making process the practitioners must face.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助明亮的傲珊采纳,获得10
刚刚
刚刚
molly发布了新的文献求助10
刚刚
1秒前
杨哈哈完成签到,获得积分10
2秒前
2秒前
小罗发布了新的文献求助10
2秒前
香蕉短靴发布了新的文献求助10
2秒前
tjbdlyh完成签到 ,获得积分10
2秒前
geen完成签到,获得积分10
2秒前
3秒前
善学以致用应助flyfish采纳,获得10
3秒前
4秒前
田様应助chenhoe1212采纳,获得10
4秒前
4秒前
xh93发布了新的文献求助10
4秒前
乐乐应助老迟到的可兰采纳,获得10
5秒前
您不疼发布了新的文献求助10
5秒前
超帅的依凝完成签到,获得积分10
5秒前
5秒前
6秒前
Franny发布了新的文献求助10
6秒前
顺利毕业耶耶耶完成签到,获得积分10
6秒前
7秒前
owl发布了新的文献求助10
7秒前
研友_ZeoKYL完成签到,获得积分10
7秒前
7秒前
8秒前
鲲kun完成签到,获得积分20
8秒前
9秒前
9秒前
博君一笑发布了新的文献求助10
9秒前
10秒前
离谱的月亮完成签到,获得积分10
10秒前
小罗完成签到,获得积分10
10秒前
kiki完成签到,获得积分10
10秒前
11秒前
传奇3应助头头采纳,获得30
11秒前
Xppcjlan发布了新的文献求助20
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731839
求助须知:如何正确求助?哪些是违规求助? 3276179
关于积分的说明 9995647
捐赠科研通 2991629
什么是DOI,文献DOI怎么找? 1641717
邀请新用户注册赠送积分活动 779958
科研通“疑难数据库(出版商)”最低求助积分说明 748579