Cross-Sectional Associations between Living and Built Environments and Depression Symptoms among Chinese Older Adults

萧条(经济学) 横断面研究 医学 自杀预防 职业安全与健康 环境卫生 伤害预防 毒物控制 人为因素与人体工程学 心理学 老年学 宏观经济学 病理 经济
作者
Fangfang Hou,Xiao Han,Qiong Wang,Shuai Zhou,Jingya Zhang,Guodong Shen,Yan Zhang
出处
期刊:International Journal of Environmental Research and Public Health [MDPI AG]
卷期号:19 (10): 5819-5819 被引量:6
标识
DOI:10.3390/ijerph19105819
摘要

In this study, we explored the cross-sectional associations between living and built environments and depression among older Chinese adults. Data from 5822 participants were obtained. Depression symptoms were evaluated through the use of the Patient Health Questionnaire (PHQ-9), with a score higher than 4 categorized as having depression symptoms. The living environment was assessed by asking about dust in the environment and barrier-free facilities. We considered the presence of amenities within a 10 min walking distance and the proportion of green space within an 800 m distance from participants’ dwellings to reflect the built environment. Data were analyzed by multilevel logistic regression. Participants living in a non-dusty environment with proximity to green space had a lower risk of depression (non-dusty environment: OR = 0.784, 95% CI = 0.642, 0.956; green space: OR = 0.834, 95% CI = 0.697, 0.998). However, having no access to barrier-free facilities and hospital proximity increased the depression risk (barrier-free facilities: OR = 1.253, 95% CI = 1.078, 1.457; hospital: OR = 1.318, 95% CI = 1.104, 1.574). Dusty environments, access to barrier-free facilities and proximity to hospitals and green spaces were associated with depression symptoms among older Chinese adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
半颗橙子发布了新的文献求助10
1秒前
小可爱完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
Jiangnj发布了新的文献求助30
3秒前
samantha完成签到,获得积分10
4秒前
4秒前
俎树同完成签到 ,获得积分10
4秒前
Natsu完成签到,获得积分10
4秒前
马保国123发布了新的文献求助10
5秒前
丘比特应助无限的隶采纳,获得10
5秒前
在云里爱与歌完成签到,获得积分10
6秒前
迟大猫应助研究生采纳,获得10
6秒前
可行完成签到,获得积分10
6秒前
6秒前
yuhui完成签到,获得积分10
6秒前
7秒前
pi发布了新的文献求助10
7秒前
7秒前
小蘑菇应助科研菜鸟采纳,获得10
8秒前
Owen应助晚风采纳,获得10
8秒前
小二郎应助Jiangnj采纳,获得10
8秒前
微信研友完成签到,获得积分10
8秒前
科研通AI5应助陈杰采纳,获得10
8秒前
9秒前
Jasper应助含糊采纳,获得10
9秒前
dfggg发布了新的文献求助10
9秒前
跑在颖发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
yatou5651发布了新的文献求助10
9秒前
10秒前
乐乐应助koi采纳,获得10
10秒前
asdfqwer发布了新的文献求助10
10秒前
10秒前
chemhub完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762