Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization

超参数 人工智能 卷积神经网络 计算机科学 深度学习 机器学习 断层(地质) 贝叶斯优化 水力机械 液压泵 高斯过程 模式识别(心理学) 工程类 高斯分布 机械工程 物理 量子力学 地震学 地质学
作者
Shengnan Tang,Yong Zhu,Shouqi Yuan
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 555-563 被引量:112
标识
DOI:10.1016/j.isatra.2022.01.013
摘要

Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and construction machinery since it is the vital component of fluid power systems. In the light of the undiscoverability of its fault and the potential serious losses, it is valuable and challenging to complete the fault identification of a hydraulic pump accurately and effectively. Owing to the limitations of shallow machine learning methods in the intelligent fault diagnosis, more attention has been paid to deep learning methods. Hyperparameter plays an important role in a deep learning model. Although some manual tuning methods may represent good results in some cases, it is hard to reproduce due to the differences of datasets and other factors. Hence, Bayesian optimization (BO) algorithm is adopted to automatically select the hyperparameters. Firstly, the time-frequency images of vibration signals by continuous wavelet transform are taken as input data. Secondly, by setting some hyperparameters, a preliminary convolutional neural network (CNN) model is established. Thirdly, by identifying the range of each hyperparameter, BO based on Gaussian process is employed to construct an adaptive CNN model named CNN-BO. The performance of CNN-BO is verified by comparing with traditional LeNet 5 and improved LeNet 5 with manual optimization. The results indicate that CNN-BO can accomplish the intelligent fault diagnosis of a hydraulic pump accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助肖肖采纳,获得10
1秒前
guozizi发布了新的文献求助10
1秒前
2秒前
7秒前
9秒前
三胖应助西米采纳,获得20
9秒前
尼i发布了新的文献求助10
9秒前
Phillar发布了新的文献求助20
10秒前
TMT完成签到 ,获得积分10
10秒前
just_cook发布了新的文献求助10
11秒前
12秒前
保卫时光完成签到,获得积分10
13秒前
14秒前
莎头发布了新的文献求助10
15秒前
朴素的闭月完成签到,获得积分20
16秒前
17秒前
善学以致用应助Longyan11采纳,获得10
17秒前
17秒前
17秒前
18秒前
悠悠发布了新的文献求助10
18秒前
19秒前
shengyou完成签到,获得积分10
20秒前
优美的飞柏完成签到 ,获得积分10
21秒前
22秒前
完美世界应助搞不好你们采纳,获得10
23秒前
小白发布了新的文献求助10
23秒前
chinzz应助风中补刀采纳,获得30
24秒前
华仔应助跳跃的中蓝采纳,获得10
25秒前
mmm完成签到 ,获得积分10
25秒前
大个应助调皮的背包采纳,获得10
27秒前
柳叶坚刀完成签到,获得积分10
28秒前
香蕉觅云应助唯心如意采纳,获得10
28秒前
29秒前
29秒前
30秒前
30秒前
尼i发布了新的文献求助30
30秒前
柳叶坚刀发布了新的文献求助10
31秒前
赘婿应助十三采纳,获得10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Relativism, Conceptual Schemes, and Categorical Frameworks 500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444814
求助须知:如何正确求助?哪些是违规求助? 3040813
关于积分的说明 8982674
捐赠科研通 2729422
什么是DOI,文献DOI怎么找? 1496901
科研通“疑难数据库(出版商)”最低求助积分说明 691967
邀请新用户注册赠送积分活动 689566