Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization

超参数 人工智能 卷积神经网络 计算机科学 深度学习 机器学习 断层(地质) 贝叶斯优化 水力机械 液压泵 高斯过程 模式识别(心理学) 工程类 高斯分布 机械工程 物理 地质学 量子力学 地震学
作者
Shengnan Tang,Yong Zhu,Shouqi Yuan
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:129: 555-563 被引量:112
标识
DOI:10.1016/j.isatra.2022.01.013
摘要

Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and construction machinery since it is the vital component of fluid power systems. In the light of the undiscoverability of its fault and the potential serious losses, it is valuable and challenging to complete the fault identification of a hydraulic pump accurately and effectively. Owing to the limitations of shallow machine learning methods in the intelligent fault diagnosis, more attention has been paid to deep learning methods. Hyperparameter plays an important role in a deep learning model. Although some manual tuning methods may represent good results in some cases, it is hard to reproduce due to the differences of datasets and other factors. Hence, Bayesian optimization (BO) algorithm is adopted to automatically select the hyperparameters. Firstly, the time-frequency images of vibration signals by continuous wavelet transform are taken as input data. Secondly, by setting some hyperparameters, a preliminary convolutional neural network (CNN) model is established. Thirdly, by identifying the range of each hyperparameter, BO based on Gaussian process is employed to construct an adaptive CNN model named CNN-BO. The performance of CNN-BO is verified by comparing with traditional LeNet 5 and improved LeNet 5 with manual optimization. The results indicate that CNN-BO can accomplish the intelligent fault diagnosis of a hydraulic pump accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰牛奶发布了新的文献求助10
2秒前
2秒前
诚心的忆曼完成签到 ,获得积分10
2秒前
4秒前
学术小牛发布了新的文献求助10
4秒前
gggg完成签到 ,获得积分10
4秒前
昵称完成签到,获得积分10
6秒前
7秒前
7秒前
wzz发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
学术熊完成签到,获得积分10
8秒前
好运连连完成签到 ,获得积分10
9秒前
在水一方应助学术小牛采纳,获得10
10秒前
yaya完成签到,获得积分10
10秒前
Brigitte发布了新的文献求助10
12秒前
橙子发布了新的文献求助30
12秒前
fan完成签到,获得积分10
12秒前
学术熊发布了新的文献求助10
12秒前
Iridescent完成签到 ,获得积分10
13秒前
rundstedt完成签到 ,获得积分10
13秒前
华仔应助mm采纳,获得10
14秒前
情怀应助jiangru采纳,获得30
15秒前
XX完成签到,获得积分10
16秒前
学术小牛完成签到,获得积分20
17秒前
Liuya完成签到,获得积分20
17秒前
橙子完成签到,获得积分10
17秒前
休亮完成签到,获得积分10
18秒前
SciGPT应助平常的半凡采纳,获得10
18秒前
19秒前
彭于彦祖应助爱喝水采纳,获得20
19秒前
22秒前
方法发布了新的文献求助10
24秒前
阿腾发布了新的文献求助20
24秒前
猪猪hero应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
猪猪hero应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150