Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization

超参数 人工智能 卷积神经网络 计算机科学 深度学习 机器学习 断层(地质) 贝叶斯优化 水力机械 液压泵 高斯过程 模式识别(心理学) 工程类 高斯分布 机械工程 物理 地质学 量子力学 地震学
作者
Shengnan Tang,Yong Zhu,Shouqi Yuan
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 555-563 被引量:112
标识
DOI:10.1016/j.isatra.2022.01.013
摘要

Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and construction machinery since it is the vital component of fluid power systems. In the light of the undiscoverability of its fault and the potential serious losses, it is valuable and challenging to complete the fault identification of a hydraulic pump accurately and effectively. Owing to the limitations of shallow machine learning methods in the intelligent fault diagnosis, more attention has been paid to deep learning methods. Hyperparameter plays an important role in a deep learning model. Although some manual tuning methods may represent good results in some cases, it is hard to reproduce due to the differences of datasets and other factors. Hence, Bayesian optimization (BO) algorithm is adopted to automatically select the hyperparameters. Firstly, the time-frequency images of vibration signals by continuous wavelet transform are taken as input data. Secondly, by setting some hyperparameters, a preliminary convolutional neural network (CNN) model is established. Thirdly, by identifying the range of each hyperparameter, BO based on Gaussian process is employed to construct an adaptive CNN model named CNN-BO. The performance of CNN-BO is verified by comparing with traditional LeNet 5 and improved LeNet 5 with manual optimization. The results indicate that CNN-BO can accomplish the intelligent fault diagnosis of a hydraulic pump accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助二中所长采纳,获得10
1秒前
Owen应助二中所长采纳,获得10
1秒前
Jasper应助二中所长采纳,获得10
1秒前
高大的易蓉完成签到,获得积分10
1秒前
1秒前
2秒前
宋真玉完成签到 ,获得积分10
2秒前
科研通AI6应助嘉嘉琦采纳,获得10
3秒前
GPTea应助安静的幻儿采纳,获得20
3秒前
哭泣高跟鞋关注了科研通微信公众号
3秒前
again发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
淡定夜山完成签到,获得积分10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
You完成签到,获得积分10
8秒前
小朱完成签到,获得积分10
9秒前
桃桃发布了新的文献求助10
10秒前
12秒前
12秒前
搜集达人应助Haha采纳,获得10
14秒前
14秒前
15秒前
FashionBoy应助天天采纳,获得10
15秒前
英俊的铭应助淋雨的猪采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405424
求助须知:如何正确求助?哪些是违规求助? 4523745
关于积分的说明 14095053
捐赠科研通 4437438
什么是DOI,文献DOI怎么找? 2435688
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406086