Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization

超参数 人工智能 卷积神经网络 计算机科学 深度学习 机器学习 断层(地质) 贝叶斯优化 水力机械 液压泵 高斯过程 模式识别(心理学) 工程类 高斯分布 机械工程 物理 地质学 量子力学 地震学
作者
Shengnan Tang,Yong Zhu,Shouqi Yuan
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:129: 555-563 被引量:112
标识
DOI:10.1016/j.isatra.2022.01.013
摘要

Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and construction machinery since it is the vital component of fluid power systems. In the light of the undiscoverability of its fault and the potential serious losses, it is valuable and challenging to complete the fault identification of a hydraulic pump accurately and effectively. Owing to the limitations of shallow machine learning methods in the intelligent fault diagnosis, more attention has been paid to deep learning methods. Hyperparameter plays an important role in a deep learning model. Although some manual tuning methods may represent good results in some cases, it is hard to reproduce due to the differences of datasets and other factors. Hence, Bayesian optimization (BO) algorithm is adopted to automatically select the hyperparameters. Firstly, the time-frequency images of vibration signals by continuous wavelet transform are taken as input data. Secondly, by setting some hyperparameters, a preliminary convolutional neural network (CNN) model is established. Thirdly, by identifying the range of each hyperparameter, BO based on Gaussian process is employed to construct an adaptive CNN model named CNN-BO. The performance of CNN-BO is verified by comparing with traditional LeNet 5 and improved LeNet 5 with manual optimization. The results indicate that CNN-BO can accomplish the intelligent fault diagnosis of a hydraulic pump accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJJXG完成签到,获得积分10
刚刚
英姑应助rio采纳,获得10
1秒前
1秒前
乐乐应助清脆的书桃采纳,获得20
1秒前
1秒前
1秒前
跳跳糖完成签到 ,获得积分10
1秒前
顺心寄文完成签到 ,获得积分10
3秒前
3秒前
3秒前
fanny完成签到,获得积分10
4秒前
4秒前
4秒前
好好学习发布了新的文献求助30
5秒前
失眠的汽车完成签到,获得积分10
5秒前
5秒前
西瓜发布了新的文献求助10
6秒前
6秒前
王小帅ok发布了新的文献求助10
6秒前
Sandy完成签到,获得积分10
7秒前
SciGPT应助小张采纳,获得10
7秒前
8秒前
pzh发布了新的文献求助10
8秒前
8秒前
迟梦琪发布了新的文献求助10
8秒前
艾科研发布了新的文献求助10
9秒前
CCR发布了新的文献求助10
9秒前
科研通AI6应助yanziwu94采纳,获得10
9秒前
9秒前
9秒前
顺心紫翠完成签到,获得积分10
10秒前
10秒前
ding应助Frose采纳,获得10
10秒前
科研通AI5应助西瓜采纳,获得10
10秒前
SciGPT应助Ccc采纳,获得10
11秒前
香蕉觅云应助Saya采纳,获得10
11秒前
昏睡的半莲完成签到,获得积分10
11秒前
英俊的铭应助大宝君采纳,获得20
11秒前
1101592875发布了新的文献求助10
12秒前
欢呼的初彤完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543