清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization

超参数 人工智能 卷积神经网络 计算机科学 深度学习 机器学习 断层(地质) 贝叶斯优化 水力机械 液压泵 高斯过程 模式识别(心理学) 工程类 高斯分布 机械工程 物理 量子力学 地震学 地质学
作者
Shengnan Tang,Yong Zhu,Shouqi Yuan
出处
期刊:Isa Transactions [Elsevier]
卷期号:129: 555-563 被引量:112
标识
DOI:10.1016/j.isatra.2022.01.013
摘要

Hydraulic axial piston pump is broadly-used in aerospace, ocean engineering and construction machinery since it is the vital component of fluid power systems. In the light of the undiscoverability of its fault and the potential serious losses, it is valuable and challenging to complete the fault identification of a hydraulic pump accurately and effectively. Owing to the limitations of shallow machine learning methods in the intelligent fault diagnosis, more attention has been paid to deep learning methods. Hyperparameter plays an important role in a deep learning model. Although some manual tuning methods may represent good results in some cases, it is hard to reproduce due to the differences of datasets and other factors. Hence, Bayesian optimization (BO) algorithm is adopted to automatically select the hyperparameters. Firstly, the time-frequency images of vibration signals by continuous wavelet transform are taken as input data. Secondly, by setting some hyperparameters, a preliminary convolutional neural network (CNN) model is established. Thirdly, by identifying the range of each hyperparameter, BO based on Gaussian process is employed to construct an adaptive CNN model named CNN-BO. The performance of CNN-BO is verified by comparing with traditional LeNet 5 and improved LeNet 5 with manual optimization. The results indicate that CNN-BO can accomplish the intelligent fault diagnosis of a hydraulic pump accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助CXS采纳,获得10
3秒前
11秒前
lsl完成签到 ,获得积分10
15秒前
Criminology34应助CXS采纳,获得10
18秒前
Tree_QD完成签到 ,获得积分10
19秒前
无极2023完成签到 ,获得积分10
25秒前
仙女完成签到 ,获得积分10
27秒前
35秒前
kittykitten完成签到 ,获得积分10
51秒前
刘丰完成签到 ,获得积分10
52秒前
爆米花应助ppf采纳,获得10
59秒前
正直的夏真完成签到 ,获得积分10
1分钟前
1分钟前
慕豁发布了新的文献求助10
1分钟前
1分钟前
科科通通完成签到,获得积分10
1分钟前
慕豁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yushiolo完成签到 ,获得积分10
1分钟前
ppf发布了新的文献求助10
1分钟前
邓洁宜完成签到,获得积分10
1分钟前
lyj完成签到 ,获得积分0
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
拼搏乐珍完成签到,获得积分10
2分钟前
持卿发布了新的文献求助80
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
sting发布了新的文献求助10
2分钟前
帅气思雁发布了新的文献求助10
2分钟前
Lny发布了新的文献求助20
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
我是老大应助ceeray23采纳,获得20
3分钟前
酷酷的紫南完成签到 ,获得积分10
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
DaYongDan完成签到 ,获得积分10
3分钟前
制药人完成签到 ,获得积分10
3分钟前
znchick完成签到,获得积分10
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614971
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551