亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data‐driven gated (DDG) CT: An automated respiratory gating method to enable DDG PET/CT

霍恩斯菲尔德秤 核医学 医学 计算机断层摄影术 断层摄影术 正电子发射断层摄影术 PET-CT 衰减校正 放射科
作者
Tinsu Pan,Mike Thomas,Dershan Luo
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3597-3611 被引量:2
标识
DOI:10.1002/mp.15620
摘要

The accuracy of positron emission tomography (PET) quantification and localization can be compromised if a misregistered computed tomography (CT) is used for attenuation correction (AC) in PET/CT. As data-driven gating (DDG) continues to grow in clinical use, these issues are becoming more relevant with respect to solutions for gated CT.In this work, a new automated DDG CT method was developed to provide average CT and DDG CT for AC of PET and DDG PET, respectively.An automatic DDG CT was developed to provide the end-expiratory (EE) and end-inspiratory (EI) phases of images from low-dose cine CT images, with all phases being averaged to generate an average CT. The respiratory phases of EE and EI were determined according to lung region Hounsfield unit (HU) values and body outline contours. The average CT was used for AC of baseline PET and DDG CT at EE phase was used for AC of DDG PET at the quiescent or EE phase. The EI and EE phases obtained with DDG CT were used for assessing the magnitude of respiratory motion. The proposed DDG CT was compared to two commercial CT gating methods: (1) 4D CT (external device based) and (2) D4D CT (DDG based) in 38 patient datasets with respect to respiratory phase image selection, lung HU, lung volume, and image artifacts. In a separate set of twenty consecutive PET/CT studies containing a mix of 18 F-FDG, 68 Ga-Dotatate, and 64 Cu-Dotatate scans, the proposed DDG CT was compared with D4D CT for impacts on registration and quantification in DDG PET/CT.In the EE phase, the images selected by DDG CT and 4D CT were identical 62.5% ± 21.6% of the time, whereas DDG CT and D4D CT were 6.5% ± 9.7%, and 4D CT and D4D CT were 8.6% ± 12.2%. These differences in EE phase image selection were significant (p < 0.0001). In the EI phase, the images selected by DDG CT and 4D CT were identical 68.2% ± 18.9% of the time, DDG CT and D4D CT were 63.9% ± 18.8%, and 4D CT and D4D CT were 61.2% ± 19.8%. These differences were not significant. The mean lung HU and volumes were not statistically different (p > 0.1) among the three methods. In some studies, DDG CT was better than D4D or 4D CT in the appropriate selection of the EE and EI phases, and D4D CT was found to reverse the EE and EI phases or not select the correct images by visual inspection. A statistically significant improvement of DDG CT over D4D CT for AC of DDG PET was also demonstrated with PET quantification analysis. When irregular breath cycles were present in the cine CT, DDG CT could be used to replace average CT for the improved AC of baseline PET.A new automatic DDG CT was developed to tackle the issues of misregistration and tumor motion in PET/CT imaging. DDG CT was significantly more consistent than D4D CT in selecting the EE phase images as the clinical standard of 4D CT. When compared to both commercial gated CT methods of 4D CT and D4D CT, DDG CT appeared to be more robust in the lower lung and upper diaphragm regions where misregistration and tumor motion often occur. DDG CT offered improved AC for DDG PET relative to D4D CT. In cases with irregular respiratory motion, DDG CT improved AC over average CT for baseline PET. The new DDG CT provides the benefits of 4D CT without the need for external device gating.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助guimizhizhu11采纳,获得10
20秒前
小梦完成签到,获得积分10
23秒前
27秒前
30秒前
老石完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
clickable发布了新的文献求助10
1分钟前
1分钟前
guimizhizhu11发布了新的文献求助10
1分钟前
白华苍松发布了新的文献求助20
1分钟前
guimizhizhu11完成签到,获得积分10
1分钟前
顾矜应助白华苍松采纳,获得10
2分钟前
颢懿完成签到 ,获得积分10
2分钟前
ccc2完成签到,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助心想柿橙采纳,获得10
2分钟前
CHEN完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
认真自行车完成签到,获得积分10
4分钟前
钱邦国完成签到 ,获得积分10
5分钟前
6分钟前
白华苍松完成签到,获得积分10
6分钟前
白华苍松发布了新的文献求助10
6分钟前
TiAmo完成签到 ,获得积分10
6分钟前
feihua1完成签到 ,获得积分10
7分钟前
大胆的碧菡完成签到,获得积分10
7分钟前
笨笨山芙完成签到 ,获得积分10
7分钟前
8分钟前
毛毛完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
酷酷海豚完成签到,获得积分10
9分钟前
胖小羊完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
123完成签到,获得积分10
11分钟前
12分钟前
千里草完成签到,获得积分10
13分钟前
13分钟前
心想柿橙发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111129
捐赠科研通 3997013
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712