Abstract P4-05-07: Assistance with an artificial intelligence-powered tumor infiltrating lymphocytes (TIL) analyzer reduces interobserver variation in pathologic scoring of TIL in breast cancer

医学 乳腺癌 肿瘤浸润淋巴细胞 组内相关 癌症 医学物理学 内科学 临床心理学 心理测量学 免疫疗法
作者
Soo Ick Cho,Wonkyung Jung,Sangjoon Choi,Seokhwi Kim,Sanghoon Song,Gahee Park,Minuk Ma,Seonwook Park,S. Anefalos Pereira,Sangheon Ahn,Brian Jaehong Aum,S. Shin,Kyunghyun Paeng,Dong‐Geun Yoo,Chan‐Young Ock
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (4_Supplement): P4-07
标识
DOI:10.1158/1538-7445.sabcs21-p4-05-07
摘要

Abstract Background Tumor infiltrating lymphocytes (TIL) is a promising prognostic marker in breast cancer. However, TIL is manually scored by pathologists, thus laborious work is required and interobserver heterogeneity exists in the results. In this study, we aimed to evaluate the clinical utility of an artificial intelligence (AI)-powered TIL analyzer in terms of reducing the interobserver variation. Methods Lunit SCOPE IO, AI-powered TIL analyzer was trained and validated with a 2.8 x 109 micrometer2 area and 5.9 x 106 TIL from 3,166 H&E Whole-Slide Images (WSI) of multiple cancer types including breast cancer, annotated by 52 board-certified pathologists. Three independent board-certified pathologists scored TIL% of H&E slides of breast cancer from an external cohort (N = 199). TIL% was calculated referenced on the guideline of Immuno-Oncology Biomarker Working Group on Breast Cancer. For the cases of TIL score difference between each pathologist and AI model more than 15%, the pathologists were asked to revise TIL% in assistance with AI model which displays both stromal area and TIL. Finally, we compared the interobserver variation based on intraclass correlation coefficients (ICC) before and after AI assistance. Results The distribution of TIL score by 3 pathologists was 7% (5-20%), 15% (5-50%), and 20% (10-40%), respectively [median (25%-75% quantile)]. The ICC value of the initial TIL score evaluation was 0.716 (95% confidence interval, 0.560-0.811). Afterward, pathologists revised their initial scoring with assistance of AI model for the cases of difference more than 15% (n = 19, 72, and 73, respectively for each pathologist). After rescoring, number of slides with 15% or more difference of TIL% between raters significantly decreased from 109 slides (54.8%) to 75 slides (37.7%, p < 0.001). The ICC value after re-scoring TIL% was 0.831 (95% confidence interval, 0.725-0.890). Conclusions There was a notable interobserver variation to score TIL% in breast cancer. Assistance with AI-powered TIL analyzer substantially improved the pathologist’s consensus and could be regarded as one of references for the final labeling of TIL%. Citation Format: Soo Ick Cho, Wonkyung Jung, Sangjoon Choi, Seokhwi Kim, Sanghoon Song, Gahee Park, Minuk Ma, Seonwook Park, Sergio Pereira, Sangheon Ahn, Brian Jaehong Aum, Seunghwan Shin, Kyunghyun Paeng, Donggeun Yoo, Chan-Young Ock. Assistance with an artificial intelligence-powered tumor infiltrating lymphocytes (TIL) analyzer reduces interobserver variation in pathologic scoring of TIL in breast cancer [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr P4-05-07.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助大仙采纳,获得10
1秒前
你你你发布了新的文献求助10
2秒前
网友依旧发布了新的文献求助10
3秒前
Estrella发布了新的文献求助30
4秒前
英俊的铭应助易三木采纳,获得10
7秒前
AGE关注了科研通微信公众号
7秒前
乐乐应助wangdada采纳,获得10
8秒前
cimy完成签到,获得积分10
9秒前
11秒前
wind完成签到,获得积分10
11秒前
yy发布了新的文献求助10
11秒前
情怀应助无悔呀采纳,获得10
12秒前
dd完成签到,获得积分10
13秒前
meng发布了新的文献求助10
14秒前
14秒前
百无禁忌完成签到,获得积分10
17秒前
吴博文完成签到,获得积分10
19秒前
Rogerlee完成签到,获得积分10
19秒前
杳鸢应助坚强钢笔采纳,获得20
19秒前
33完成签到,获得积分10
19秒前
22秒前
25秒前
龙龙ff11_完成签到,获得积分10
28秒前
吴博文发布了新的文献求助10
30秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
35秒前
35秒前
36秒前
MM11111给林林的求助进行了留言
36秒前
37秒前
37秒前
Jewel_719完成签到,获得积分10
38秒前
雪碧发布了新的文献求助10
39秒前
超级的绿凝完成签到 ,获得积分10
41秒前
42秒前
雪碧完成签到,获得积分10
45秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205702
求助须知:如何正确求助?哪些是违规求助? 2854829
关于积分的说明 8096677
捐赠科研通 2519739
什么是DOI,文献DOI怎么找? 1352718
科研通“疑难数据库(出版商)”最低求助积分说明 641571
邀请新用户注册赠送积分活动 612582