RHONN Modelling-Enabled Nonlinear Predictive Control for Lateral Dynamics Stabilization of an In-Wheel Motor Driven Vehicle

车辆动力学 非线性系统 控制理论(社会学) 模型预测控制 控制工程 非线性模型 工程类 动力学(音乐) 控制(管理) 计算机科学 汽车工程 物理 人工智能 量子力学 声学
作者
Hao Chen,Junzhi Zhang,Chen Lv
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (8): 8296-8308 被引量:19
标识
DOI:10.1109/tvt.2022.3172870
摘要

Featuring the fast response and flexibility in control allocation, an electric vehicle with in-wheel motors is a good platform for implementing advanced vehicle dynamics control. Among many active safety functions of an in-wheel motor driven vehicle (IMDV), lateral stability control is a key technology, which can be realized through torque vectoring. To further advance the lateral stabilization performance of the IMDV, in this article a novel data-driven nonlinear model predictive control (NMPC) is proposed based the recurrent high-order neural network (RHONN) modelling method. First, the new RHONN model is developed to represent vehicle's nonlinear dynamic behaviors. Different from the conventional physics-based modelling method, the RHONN model forms high-order polynomials by neuron states to feature nonlinear dynamics. Based on the RHONN model, the steady-state responses of vehicle's yaw rate and sideslip angle are iteratively optimized and set as the control objectives for low-level controller, aiming to improve the system robustness. Besides, a nonlinear model predictive controller is designed based on the RHONN, which is expected to improve the prediction accuracy during the receding horizon control. Further, a constrained optimization problem is formulated to derive the required yaw moment for vehicle lateral dynamics stabilization. Finally, the performance of the developed RHONN-based nonlinear MPC is validated on an IMDV in the CarSim/Simulink simulation environment. The validation results show that the developed approach outperforms the conventional method, and further improves the stable margin of the system. It is able to enhance the lateral stabilization performance of the IMDV under various driving scenarios, demonstrating the feasibility and effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serayu123完成签到,获得积分10
刚刚
1秒前
施超越发布了新的文献求助10
1秒前
1秒前
SciGPT应助简隋英采纳,获得10
1秒前
1秒前
3秒前
3秒前
3秒前
廉乐儿发布了新的文献求助10
4秒前
4秒前
Yziii应助墨墨采纳,获得20
6秒前
小王发布了新的文献求助10
7秒前
Owen应助Aphelios采纳,获得30
7秒前
Ec_w发布了新的文献求助10
7秒前
8秒前
9秒前
Jasper应助黄橙子采纳,获得10
10秒前
时间煮雨我煮鱼完成签到,获得积分10
12秒前
Lyn应助白鸽鸽采纳,获得10
12秒前
彭于晏应助orange9采纳,获得10
12秒前
深情安青应助喽噜嘟咦呀采纳,获得10
13秒前
高大凌寒完成签到,获得积分10
13秒前
迷路海蓝应助快乐十八采纳,获得20
13秒前
14秒前
霸气的小叮当完成签到,获得积分10
15秒前
无花果应助unicorn采纳,获得10
16秒前
17秒前
JxJ发布了新的文献求助10
17秒前
19秒前
菠萝吹雪发布了新的文献求助30
19秒前
20秒前
20秒前
两粒葱花儿完成签到,获得积分10
21秒前
21秒前
Toooo发布了新的文献求助10
21秒前
cheryl发布了新的文献求助10
22秒前
少年锦时asd完成签到,获得积分10
24秒前
和谐竺发布了新的文献求助10
25秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254496
求助须知:如何正确求助?哪些是违规求助? 2896621
关于积分的说明 8293567
捐赠科研通 2565575
什么是DOI,文献DOI怎么找? 1393151
科研通“疑难数据库(出版商)”最低求助积分说明 652436
邀请新用户注册赠送积分活动 629972