Participant selection algorithms for large-scale mobile crowd sensing environment

计算机科学 上传 钥匙(锁) 选择(遗传算法) 选择算法 服务提供商 比例(比率) 网络数据包 分布式计算 数据挖掘 算法
作者
Sanjoy Mondal,Sukanta Mitra,Anirban Mukherjee,Saurav Ghosh,Sunirmal Khatua,Abhishek Das,Rajib K. Das
出处
期刊:Microsystem Technologies-micro-and Nanosystems-information Storage and Processing Systems [Springer Science+Business Media]
标识
DOI:10.1007/s00542-022-05271-2
摘要

Mobile crowd sensing (MCS) is an emerging sensing platform that concedes mobile users to efficiently collect data and share information with the MCS service providers. Despite its benefits, a key challenge in MCS is how beneficially select a minimum subset of participants from the large user pool to achieve the desired level of coverage. In this paper, we propose several algorithms to choose a minimum number of mobile users(or participants) who met the desired level of coverage. We consider two different cases, in the first case, only a single participant is allowed to upload a data packet for a particular target, whereas for the other case, two participants are allowed to do the same (provided that the target is covered by more than one participants). An optimal solution to the problem can be found by solving integer linear programmings (ILP’s). However, due to the exponential complexity of the ILP problem, for the large input size, it is infeasible from the point of execution time as well as the requirement of having the necessary information about all the participants in a central location. We also propose a distributed participant selection algorithm considering both the cases, which are dynamic in nature and run at every user. Each user exchanges their message with the neighbors to decide whether to remain idle or active. A series of experiments are executed to measure the performance of the proposed algorithms. Simulation results reveal the proximity of the proposed distributed algorithm compared to the optimal result providing the same coverage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jump发布了新的文献求助10
1秒前
Yang发布了新的文献求助10
1秒前
悲伤西米露应助Moon采纳,获得10
1秒前
所所应助Jessica采纳,获得10
1秒前
xiangrikui完成签到,获得积分0
2秒前
jump发布了新的文献求助10
2秒前
善学以致用应助faoran采纳,获得10
5秒前
9秒前
冲冲冲完成签到,获得积分10
11秒前
无花果应助不羁的红枫叶采纳,获得10
11秒前
faoran发布了新的文献求助10
12秒前
12秒前
思源应助翠果的嘴采纳,获得10
12秒前
14秒前
无心的土豆完成签到 ,获得积分10
14秒前
15秒前
冬灵发布了新的文献求助10
16秒前
闾丘惜萱发布了新的文献求助10
17秒前
Wei应助Gotyababy采纳,获得10
17秒前
旋转木马9个完成签到 ,获得积分10
17秒前
18秒前
阳yang完成签到,获得积分10
18秒前
旺旺发布了新的文献求助10
18秒前
明德zhuang发布了新的文献求助30
19秒前
20秒前
21秒前
打打应助6633采纳,获得10
21秒前
婉婉发布了新的文献求助10
23秒前
gg发布了新的文献求助10
25秒前
28秒前
30秒前
布吉岛完成签到,获得积分10
31秒前
32秒前
天天快乐应助faoran采纳,获得10
33秒前
33秒前
Gotyababy完成签到,获得积分10
33秒前
gg发布了新的文献求助10
34秒前
称心寒松发布了新的文献求助10
35秒前
Jessica发布了新的文献求助10
36秒前
zzz发布了新的文献求助30
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740888
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036321
捐赠科研通 3000434
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783686
科研通“疑难数据库(出版商)”最低求助积分说明 750427