已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Parameter Smart Health Monitoring System using Internet of Things

物联网 计算机科学 互联网 互联网隐私 计算机安全 万维网
作者
V. Noel Jeygar Robert,P. Ragupathy,K. Chandraprabha,A. Sunitha Nandhini,M. Gnanasekaran
标识
DOI:10.1109/icais53314.2022.9742828
摘要

Low-cost, lightweight, tiny, and intelligent physiological sensor nodes have been designed in the recent technical developments in sensor systems, low power integrated circuits and wireless communications. These sensor nodes can detect analyses and transmit one or more vital signs and can be incorporated smoothly into healthcare social sensor networks. This network promises to change healthcare by enabling cheap, invasive, ongoing ambulatory health surveillance with online medical data updated nearly in real time. Despite several continuous research efforts, several technological, economic and societal issues are essential to the There are still some technological challenges to be addressed in order to develop diverse social sensor networks applicable to medical, economic and social and power efficiency applications. In this proposed work, novel method which is used to track patients in hospitals at home as well. The experimental analysis starts with the implementation of IoT sectors, mainly an Arduino-UNO health observation scheme. Patient's cardiac rates and body temperature is monitor in the proposed work. Arduino-UNO is used as the 8-bit microcontroller, ATMEGA 328. LM 35 is used for body temperature sensing, and XD-58C for cardiac beat rate measurement is used for DIY pulse tracker. Wi-Fi module EP8266 is used to move the data of the patient from the Arduino uno node. For IoT purposes, the BLYNK programmer is used. A new algorithm is proposed which is named as CBHA (Sensor clustering based Human Activities Recognition) that analyze state of the Patient. The data transferred from the WiFi module can be used from anywhere in the app, meaning that doctors can watch patients remotely and take prompt decisions if something goes wrong with the information that has been detected.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助sk4ajd采纳,获得10
2秒前
3秒前
狂野的锦程关注了科研通微信公众号
4秒前
4秒前
扶摇完成签到 ,获得积分10
6秒前
星辰大海应助f1mike110采纳,获得10
7秒前
7秒前
bbbbb12581完成签到,获得积分10
8秒前
我是老大应助Z女士采纳,获得30
8秒前
8秒前
桐桐应助崔世强采纳,获得10
10秒前
小二郎应助古月采纳,获得10
10秒前
11秒前
dmoney发布了新的文献求助10
12秒前
dxd小郭发布了新的文献求助10
14秒前
15秒前
情怀应助xing采纳,获得10
15秒前
seven发布了新的文献求助10
16秒前
17秒前
oydent应助fangzhang采纳,获得10
22秒前
zzz完成签到,获得积分10
23秒前
故城发布了新的文献求助10
24秒前
27秒前
27秒前
28秒前
crde完成签到 ,获得积分10
29秒前
29秒前
桐桐应助简单茗采纳,获得10
30秒前
酷波er应助清新的静枫采纳,获得10
30秒前
李伟完成签到,获得积分10
30秒前
iberis发布了新的文献求助10
31秒前
fangzhang发布了新的文献求助10
31秒前
xing发布了新的文献求助10
31秒前
32秒前
默默的棒棒糖完成签到 ,获得积分10
33秒前
瞿选葵发布了新的文献求助10
34秒前
善学以致用应助515采纳,获得10
38秒前
二丙完成签到 ,获得积分10
39秒前
39秒前
42秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463477
求助须知:如何正确求助?哪些是违规求助? 3056839
关于积分的说明 9054254
捐赠科研通 2746752
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695883