Multi-Parameter Smart Health Monitoring System using Internet of Things

物联网 计算机科学 互联网 互联网隐私 计算机安全 万维网
作者
V. Noel Jeygar Robert,P. Ragupathy,K. Chandraprabha,A. Sunitha Nandhini,M. Gnanasekaran
标识
DOI:10.1109/icais53314.2022.9742828
摘要

Low-cost, lightweight, tiny, and intelligent physiological sensor nodes have been designed in the recent technical developments in sensor systems, low power integrated circuits and wireless communications. These sensor nodes can detect analyses and transmit one or more vital signs and can be incorporated smoothly into healthcare social sensor networks. This network promises to change healthcare by enabling cheap, invasive, ongoing ambulatory health surveillance with online medical data updated nearly in real time. Despite several continuous research efforts, several technological, economic and societal issues are essential to the There are still some technological challenges to be addressed in order to develop diverse social sensor networks applicable to medical, economic and social and power efficiency applications. In this proposed work, novel method which is used to track patients in hospitals at home as well. The experimental analysis starts with the implementation of IoT sectors, mainly an Arduino-UNO health observation scheme. Patient's cardiac rates and body temperature is monitor in the proposed work. Arduino-UNO is used as the 8-bit microcontroller, ATMEGA 328. LM 35 is used for body temperature sensing, and XD-58C for cardiac beat rate measurement is used for DIY pulse tracker. Wi-Fi module EP8266 is used to move the data of the patient from the Arduino uno node. For IoT purposes, the BLYNK programmer is used. A new algorithm is proposed which is named as CBHA (Sensor clustering based Human Activities Recognition) that analyze state of the Patient. The data transferred from the WiFi module can be used from anywhere in the app, meaning that doctors can watch patients remotely and take prompt decisions if something goes wrong with the information that has been detected.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助张一二二二采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
在水一方应助努力的蜗牛采纳,获得10
1秒前
搜集达人应助nnmm11采纳,获得10
1秒前
1秒前
科研通AI2S应助Chnp采纳,获得10
1秒前
体贴半仙完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
灵巧的沛山完成签到,获得积分10
3秒前
哒哒猪完成签到,获得积分10
3秒前
酷波er应助他方世界采纳,获得10
4秒前
4秒前
zn315315完成签到,获得积分10
4秒前
弓长发布了新的文献求助10
4秒前
雷xy发布了新的文献求助10
5秒前
英姑应助wiink采纳,获得10
5秒前
5秒前
慕青应助真理采纳,获得10
5秒前
6秒前
juwairen119发布了新的文献求助10
6秒前
tracer发布了新的文献求助10
6秒前
网GHD发布了新的文献求助10
7秒前
CodeCraft应助完美的念柏采纳,获得10
7秒前
8秒前
jial发布了新的文献求助10
8秒前
一口完成签到,获得积分10
8秒前
9秒前
9秒前
桐桐应助杨昌琪采纳,获得10
9秒前
科研通AI6应助strawberry采纳,获得10
9秒前
Lft完成签到,获得积分10
10秒前
10秒前
九幺发布了新的文献求助10
10秒前
天天快乐应助九城采纳,获得10
10秒前
入梦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362