A de-ambiguous condition monitoring scheme for wind turbines using least squares generative adversarial networks

SCADA系统 涡轮机 风力发电 可靠性(半导体) 鉴别器 断层(地质) 状态监测 计算机科学 可靠性工程 方案(数学) 工程类 数据挖掘 控制工程 实时计算 功率(物理) 数学 电信 地质学 数学分析 物理 地震学 电气工程 机械工程 量子力学 探测器
作者
Anqi Wang,Qian Zheng,Yan Pei,Bo Jing
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:185: 267-279 被引量:16
标识
DOI:10.1016/j.renene.2021.12.049
摘要

Wind turbine condition monitoring (WTCM) plays an important role in reducing operation & maintenance (O&M) cost and improving the reliability of wind farms. Supervisory control and data acquisition (SCADA) data have advantages such as easy access and strong timeliness and are used widely for WTCM. However, it is difficult to distinguish and label historical SCADA data as healthy or faulty accurately during the model training process. Therefore, a De-ambiguous Condition Monitoring scheme with Transfer layer (DCMT) based on SCADA data is proposed to overcome this problem. This scheme provides a fault early warning for wind turbines. In this scheme, an improved auto-encoder (AE) network with a transfer layer is designed to eliminate the effect of SCADA data in the ambiguous status (ambiguous data) and enhance the reliability of a training dataset. Meanwhile, a structure of Siamese encoder is designed to calculate the residuals between latent features, i.e., the outputs of the Siamese encoders. These residuals can be utilised to identify wind turbine operational conditions. Further, least squares generative adversarial networks (LSGAN) is introduced to learn the distribution of health data while restricting the discriminator and realising the augmentation of health data for model training. The proposed method is applied to two cases of generator winding and gearbox bearing over-temperature faults of wind turbines from northwest China. Compared with other methods, the proposed method effectively detects potential abnormal conditions in advance without raising false alarms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流光发布了新的文献求助10
刚刚
科研通AI5应助易达采纳,获得30
3秒前
ding应助优美水彤采纳,获得10
4秒前
zihanwang应助ll采纳,获得10
4秒前
deng完成签到 ,获得积分10
4秒前
xslj发布了新的文献求助10
5秒前
5秒前
李存完成签到,获得积分10
6秒前
博弈春秋发布了新的文献求助10
7秒前
展会恩完成签到,获得积分10
7秒前
8秒前
科研通AI5应助喝杯水再走采纳,获得10
8秒前
zihanwang应助鳗鱼不尤采纳,获得30
9秒前
Lu完成签到 ,获得积分10
10秒前
yehaidadao发布了新的文献求助30
10秒前
上官若男应助万物更始采纳,获得10
11秒前
13秒前
DNAdamage完成签到,获得积分10
14秒前
鹿茸与共发布了新的文献求助10
14秒前
15秒前
koitoyu完成签到,获得积分10
15秒前
xslj完成签到,获得积分10
16秒前
16秒前
全职法师刘海柱完成签到,获得积分10
17秒前
竹筏过海应助戚鹏举采纳,获得30
17秒前
17秒前
赘婿应助季春九采纳,获得20
17秒前
19秒前
AixGnad发布了新的文献求助10
20秒前
21秒前
22秒前
柒辞完成签到,获得积分10
22秒前
23秒前
zy95282发布了新的文献求助10
23秒前
23秒前
23秒前
幸福的雪枫完成签到,获得积分10
24秒前
25秒前
WHHW发布了新的文献求助10
25秒前
AixGnad完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075