A multi-peak detection algorithm for FBG based on WPD-HT

算法 计算机科学
作者
Zheng Lv,Yue Wu,Wei Zhuang,Xu Zhang,Lianqing Zhu
出处
期刊:Optical Fiber Technology [Elsevier BV]
卷期号:68: 102805-102805 被引量:7
标识
DOI:10.1016/j.yofte.2021.102805
摘要

• In this paper, a peak detection algorithm for FBG sensor system is proposed. The background noise in the system is reduced by wavelet packet decomposition threshold method. The peak interval can be adaptively divided by Hilbert transform, and the parabola fitting method is used for peak detection. • Through simulation and experiments, the algorithm has good denoising effect, high stability and accuracy, the stability of the algorithm is better than 0.5 pm and the temperature detection accuracy is better than 0.352 ℃. The calculation speed is 81.2% higher than that of Gaussian LM method. It is suitable for FBG multi peak real-time detection system. An accurate multi-peak detection algorithm based on wavelet packet decomposition (WPD) denoising and Hilbert transform (HT) is proposed. WPD and wavelet threshold method are used to denoise the high-frequency part of the spectrum. HT and parabola fitting are used to divide the peak area adaptively and calculate the central wavelength. Simulation results show that compared with the other four denoising methods, this denoising algorithm can solve the problem of background noise more effectively. Compared with the Gaussian LM (Levenberg-Marquardt) algorithm, Centroid method, and polynomial fitting method, this method has higher precision. Experimental results of real-time temperature detection show that the stability is better than 0.5 pm at 0℃ and the temperature monitoring accuracy is better than 0.352℃ in the range of −20℃∼ 40℃, which is the best among the four algorithms. The computational speed is 81.2% higher than the Gauss LM algorithm. In general, this method can be applied to FBG real-time temperature monitoring and demodulation system under the condition of background noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康乐顺岸完成签到,获得积分10
刚刚
plusweng完成签到 ,获得积分10
1秒前
1秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
2秒前
cyan完成签到 ,获得积分10
2秒前
叽叽卟卟发布了新的文献求助10
4秒前
耳机单蹦完成签到,获得积分10
5秒前
pluto应助Leslie采纳,获得10
5秒前
脑洞疼应助称心寒松采纳,获得30
5秒前
yc完成签到,获得积分10
5秒前
外向的鸭子完成签到,获得积分10
5秒前
不和可乐发布了新的文献求助10
7秒前
苹果蜗牛完成签到 ,获得积分10
7秒前
兔纸兔吱兔仔儿完成签到,获得积分10
8秒前
9秒前
科研通AI5应助Raiden采纳,获得20
9秒前
10秒前
10秒前
liuyifei发布了新的文献求助20
11秒前
王灿灿发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
稀松完成签到,获得积分0
15秒前
15秒前
www发布了新的文献求助10
16秒前
栗子发布了新的文献求助10
16秒前
16秒前
16秒前
leisure完成签到,获得积分20
16秒前
17秒前
glj关闭了glj文献求助
17秒前
文艺裘发布了新的文献求助10
18秒前
支焱发布了新的文献求助10
19秒前
20秒前
朱镕完成签到 ,获得积分10
21秒前
橘涂完成签到 ,获得积分10
21秒前
xiaoE发布了新的文献求助10
21秒前
Raiden发布了新的文献求助20
21秒前
kunkun发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427