Compound fault diagnosis model for Photovoltaic array using multi-scale SE-ResNet

光伏系统 断层(地质) 比例(比率) 故障检测与隔离 电压 可靠性工程 计算机科学 汽车工程 实时计算 工程类 人工智能 电气工程 物理 量子力学 地震学 执行机构 地质学
作者
Peijie Lin,Zhuang Qian,Xiaoyang Lu,Yaohai Lin,Yunfeng Lai,Shuying Cheng,Zhicong Chen,Lijun Wu
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:50: 101785-101785 被引量:24
标识
DOI:10.1016/j.seta.2021.101785
摘要

• A multi-scale SE-ResNet is used to diagnose compound faults for PV array under dust covering. • A multi-scale receptive field fusion module is proposed to extract finer features. • The proposed model can estimate the degree of dust coverage on PV array. • The performance of the proposed model is superior to those of 1D-ResNet and ResNet18. • The proposed model can be transfered to the condition of dust accumulate on the bottom of the PV panels. Photovoltaic (PV) systems working outdoors are susceptible to various faults. The deposition of dust on the PV array may make these faults more complicated, resulting in a kind of compound faults. The similarity between compound faults and single faults leads to their misclassification. Therefore, accurately detection of potential PV array compound faults is essential to improve the operating efficiency and safety of PV systems. Addressing the above situation, this paper proposes a fault diagnosis (FD) scheme for PV array using a multi-scale SE-ResNet network. In addition, a multi-scale receptive field fusion module (MRFF) is designed to improve the diagnostic performance of the model. This model can automatically extract multi-scale fault features from input raw current–voltage curves data and environmental parameters. The single faults, partial shading conditions (PSCs), and compound faults under different degrees of dust covering can be diagnosed. In addition, the dust coverage degree is estimated simultaneously, which can provide a basis for developing a cleaning schedule. Simulation and experiment results demonstrate the superior performance of this method compared with other approaches, and also indicate the proposed model can be applied to the condition of dust accumulate on the bottom of the PV panels through transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助合适台灯采纳,获得30
刚刚
清爽雁开发布了新的文献求助10
刚刚
Chris学长完成签到,获得积分10
刚刚
刚刚
dreamrain完成签到,获得积分10
1秒前
景行完成签到,获得积分10
2秒前
jenningseastera应助mc1220采纳,获得30
3秒前
djiwisksk66应助belssingoo采纳,获得10
3秒前
3秒前
202483067完成签到 ,获得积分10
3秒前
万能图书馆应助mushini采纳,获得10
3秒前
露露子发布了新的文献求助10
4秒前
子车雁开完成签到,获得积分10
4秒前
无花果应助meidoudou采纳,获得10
4秒前
滕擎发布了新的文献求助10
4秒前
4秒前
Jozee发布了新的文献求助10
5秒前
5秒前
Owen应助husky采纳,获得10
6秒前
6秒前
6秒前
彭于晏应助昂莫达采纳,获得10
7秒前
7秒前
花无缺发布了新的文献求助10
8秒前
wangdao完成签到,获得积分10
8秒前
8秒前
香蕉语芙完成签到,获得积分10
8秒前
9秒前
Ava应助Jack123采纳,获得20
9秒前
二七完成签到 ,获得积分10
9秒前
10秒前
10秒前
ltc完成签到,获得积分10
10秒前
10秒前
yeye完成签到,获得积分10
10秒前
共享精神应助正直的雨双采纳,获得10
10秒前
典雅的静发布了新的文献求助10
11秒前
11秒前
77完成签到,获得积分10
11秒前
强健的黑猫完成签到,获得积分20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154