微震
各向异性
反演(地质)
力矩张量
人工神经网络
力矩(物理)
地质学
焦点机制
计算机科学
张量(固有定义)
算法
地球物理学
人工智能
地震学
数学
几何学
物理
光学
经典力学
构造学
海洋学
断层(地质)
变形(气象学)
作者
Germn I. Brunini,Danilo R. Velis,Juan I. Sabbione
标识
DOI:10.1109/rpic53795.2021.9648414
摘要
We design a deep neural network (DNN) and train it to invert the focal mechanism of microseismic events that occur during a hydraulic fracture treatment of unconventional reservoirs. For the testing, we generate synthetic microseismic events in anisotropic 3D media and consider a realistic dual-well monitoring scenario. We show that for this geometry a trained DNN can successfully retrieve the six independent elements of the moment tensor. We statistically analyze the correlation coefficients and relative errors of the results and demonstrate that the moment tensor can be accurately estimated using the proposed DNN, providing a reliable alternative to other conventional inversion techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI