[Development of a deep learning based prototype artificial intelligence system for the detection of dental caries in children].

牙科 医学 口腔正畸科
作者
Renpeng Li,Ji Xiang Zhu,Y Y Wang,Shan Zhao,C F Peng,Qinyu Zhou,Rémy Sun,Aimin Hao,Shu Li,Y Wang,Binbin Xia
出处
期刊:PubMed 卷期号:56 (12): 1253-1260 被引量:7
标识
DOI:10.3760/cma.j.cn112144-20210712-00323
摘要

Objective: To develop a prototype artificial intelligence image recognition system for detecting dental caries, especially those without cavities, in children. Methods: Seven hundred and twelve intraoral photos, which were taken by dental professionals using a digital camera from October 2013 to June 2020 in the Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, were collected from the children who received dental treatment under general anesthesia. The well-documented post-treatment electronic dental record of each child was identified as label standard to determine whether the teeth were carious and the type of caries types such as caries that had become cavities (caries with cavities), pit and fissure caries that had not become cavities (pit and fissure caries) and proximal caries which the marginal ridge enamel had not been destroyed (proximal caries). The various teeth and caries types were labeled by pediatric dentists using VoTT software (Windows 2.1.0, Microsoft, U S A). There were five labeled groups: pit and fissure caries, approximal caries, non-carious approximal surfaces, caries with cavities and teeth without caries (including intact fillings). Each group was randomly divided into training dataset, validation dataset and test dataset at a ratio of 6.4∶1.6∶2.0 by using random number table. After using the labeled training dataset for deep learning training, a deep learning-based artificial intelligence (AI) image recognition system for detecting dental caries was established, with the caries probability greater than 50.0% as the criterion for determining caries. Sensitivity and accuracy were used as indicators of recognition specificity. Results: Seven hundred and twelve single-jaw intraoral photographs were segmented and annotated into 953 pit and fissure caries, 1 002 approximal caries, 3 008 caries with cavities, 3 189 teeth without caries and 862 non-carious approximal surfaces, totaly 9 014 labels. The sensitivities and specificities of the test set were 96.0% and 97.0% for caries with cavities, 95.8% and 99.0% for pit and fissure caries and 88.1% and 97.1% for approximal caries. Conclusions: The current AI system developed based on deep learning of the intra-oral photos in the present study showed the ability to detect dental caries. Furthermore, the AI system could accurately verify different types of dental caries such as caries with cavities, pit and fissure caries and proximal caries.目的: 通过深度学习的方法,开发具备判断儿童牙齿是否龋坏尤其是判断未成洞龋能力的人工智能识别系统雏形。 方法: 收集北京大学口腔医学院·口腔医院儿童口腔科2013年10月至2020年6月拍摄的符合纳入标准的全身麻醉治疗前患儿单颌口内数码照片712张,以记录完备的治疗后病历诊断结合口内像确定牙齿是否龋坏以及龋的类型,具体包括:已成洞的龋(成洞龋)、未成洞的窝沟龋、边缘嵴釉质未破坏的邻面龋(未成洞邻面龋)。由儿童口腔科医师使用VoTT软件(Windows 2.1.0,Microsoft,美国)对不同牙齿及龋坏类型进行标注。分5个标签组:未成洞窝沟龋、未成洞邻面龋、完好无龋坏的牙齿邻面、成洞龋及无龋牙(含已完好充填的牙齿);每个标签组数据按6.4∶ 1.6∶ 2.0的比例采用随机数表的方法随机分为训练集、验证集和测试集数据。采用标注后的训练数据集进行深度学习训练,并建立龋齿人工智能识别系统,以龋坏概率大于50.0%作为患龋的判断标准输出判断结果,并对测试集数据进行识别。应用灵敏度、特异度等作为识别各类龋坏准确性的指标评价人工智能系统的判断能力。 结果: 712张单颌口内照片经分割标注得到未成洞窝沟龋953张,未成洞邻面龋1 002张,成洞龋3 008张,无龋牙3 189张,无龋邻面862张,共计9 014张图像数据。测试集的识别结果:对成洞龋识别灵敏度和特异度分别为96.0%和97.0%;对未成洞窝沟龋灵敏度为95.8%,特异度99.0%;对未成洞邻面龋灵敏度为88.1%,特异度97.1%。 结论: 本研究构建的儿童龋人工智能识别系统雏形,具备判断龋坏的能力,对同组样本该系统不仅能准确判断成洞龋,对未成洞的窝沟龋、边缘嵴釉质未破坏的邻面龋也能准确判断。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
极意完成签到 ,获得积分10
1秒前
左友铭发布了新的文献求助10
1秒前
1秒前
1秒前
爱听歌雨真完成签到,获得积分10
2秒前
2秒前
Amai发布了新的文献求助20
3秒前
酷酷凤灵发布了新的文献求助10
3秒前
4秒前
风雨1210完成签到,获得积分10
4秒前
抗压兔完成签到 ,获得积分10
4秒前
chillin发布了新的文献求助10
4秒前
阳尧发布了新的文献求助10
5秒前
天天快乐应助troubadourelf采纳,获得10
5秒前
勤恳慕蕊发布了新的文献求助10
6秒前
6秒前
kxy完成签到,获得积分10
9秒前
9秒前
婧婧完成签到 ,获得积分10
9秒前
10秒前
11秒前
左友铭完成签到 ,获得积分10
11秒前
sweetbearm应助通~采纳,获得10
11秒前
AKLIZE完成签到,获得积分10
11秒前
刘大妮完成签到,获得积分10
12秒前
clean完成签到,获得积分20
13秒前
Lucas发布了新的文献求助10
13秒前
13秒前
朴实以松发布了新的文献求助10
13秒前
感谢橘子转发科研通微信,获得积分50
13秒前
围炉煮茶完成签到,获得积分10
14秒前
14秒前
云锋发布了新的文献求助10
15秒前
兴奋的问旋应助务实盼海采纳,获得10
15秒前
李秋静发布了新的文献求助10
15秒前
15秒前
无花果应助cookie采纳,获得10
16秒前
16秒前
斯文败类应助阳尧采纳,获得10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794