Single Tree Classification Using Multi-Temporal ALS Data and CIR Imagery in Mixed Old-Growth Forest in Poland

随机森林 每年落叶的 点云 温带雨林 遥感 上下文图像分类 温带落叶林 计算机科学 林业 人工智能 地理 生态学 生态系统 生物 图像(数学)
作者
Agnieszka Kamińska,Maciej Lisiewicz,Krzysztof Stereńczak
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (24): 5101-5101 被引量:11
标识
DOI:10.3390/rs13245101
摘要

Tree species classification is important for a variety of environmental applications, including biodiversity monitoring, wildfire risk assessment, ecosystem services assessment, and sustainable forest management. In this study we used a fusion of three remote sensing (RM) datasets including ALS (leaf-on and leaf-off) and colour-infrared (CIR) imagery (leaf-on), to classify different coniferous and deciduous tree species, including dead class, in a mixed temperate forest in Poland. We used intensity and structural variables from the ALS data and spectral information derived from aerial imagery for the classification procedure. Additionally, we tested the differences in classification accuracy of all the variants included in the data integration. The random forest classifier was used in the study. The highest accuracies were obtained for classification based on both point clouds and including image spectral information. The mean values for overall accuracy and kappa were 84.3% and 0.82, respectively. Analysis of the leaf-on and leaf-off alone is not sufficient to identify individual tree species due to their different discriminatory power. Leaf-on and leaf-off ALS point cloud features alone gave the lowest accuracies of 72% ≤ OA ≤ 74% and 0.67 ≤ κ ≤ 0.70. Classification based on both point clouds was found to give satisfactory and comparable results to classification based on combined information from all three sources (83% ≤ OA ≤ 84% and 0.81 ≤ κ ≤ 0.82). The classification accuracy varied between species. The classification results for coniferous trees were always better than for deciduous trees independent of the datasets. In the classification based on both point clouds (leaf-on and leaf-off), the intensity features seemed to be more important than the other groups of variables, especially the coefficient of variation, skewness, and percentiles. The NDVI was the most important CIR-based feature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nc完成签到,获得积分10
1秒前
大力世界发布了新的文献求助10
1秒前
落后乐荷发布了新的文献求助10
1秒前
1秒前
矮小的凡阳完成签到 ,获得积分10
2秒前
果果瑞宁完成签到,获得积分10
2秒前
ChuanjiWu完成签到,获得积分10
2秒前
嘟嘟嘟嘟完成签到 ,获得积分10
3秒前
3秒前
罐装小理完成签到,获得积分10
3秒前
CE完成签到,获得积分20
4秒前
4秒前
4秒前
天才小张发布了新的文献求助10
5秒前
kimoki完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助顾城浪子采纳,获得30
6秒前
123发布了新的文献求助10
6秒前
SYLH应助动听梨愁采纳,获得10
7秒前
orixero应助淡淡的雪采纳,获得10
8秒前
所所应助罐装小理采纳,获得10
9秒前
hushan53发布了新的文献求助10
10秒前
1028181661发布了新的文献求助10
10秒前
齐天大圣完成签到,获得积分10
12秒前
爆米花应助逃亡的小狗采纳,获得10
12秒前
单于天宇完成签到,获得积分10
13秒前
领导范儿应助天才小张采纳,获得10
13秒前
阳光的中蓝完成签到,获得积分10
14秒前
坦率芝麻完成签到,获得积分10
14秒前
hututu完成签到,获得积分10
14秒前
在水一方应助1028181661采纳,获得10
14秒前
16秒前
16秒前
科研通AI5应助鳗鱼没采纳,获得10
16秒前
16秒前
mascot0111完成签到,获得积分10
16秒前
17秒前
机灵秋柳发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514849
求助须知:如何正确求助?哪些是违规求助? 3097216
关于积分的说明 9234514
捐赠科研通 2792168
什么是DOI,文献DOI怎么找? 1532293
邀请新用户注册赠送积分活动 711963
科研通“疑难数据库(出版商)”最低求助积分说明 707062