清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep Convolutional Neural Network Using MRI: Automated Differentiation between Osteoporotic Vertebral Fracture and Vertebral Compression Fractures Due to Spinal Metastasis.

医学 放射科 椎骨 骨质疏松症 磁共振成像 脊髓压迫 椎体压缩性骨折
作者
Takafumi Yoda,Satoshi Maki,Takeo Furuya,Hajime Yokota,Koji Matsumoto,Hiromitsu Takaoka,Takuya Miyamoto,Sho Okimatsu,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Yawara Eguchi,Takeshi Yamashita,Yoshitada Masuda,Takashi Uno,Seiji Ohtori
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/brs.0000000000004307
摘要

Retrospective study of magnetic resonance imaging (MRI).To assess the ability of a convolutional neural network (CNN) model to differentiate osteoporotic vertebral fractures (OVFs) and malignant vertebral compression fractures (MVFs) using short-TI inversion recovery (STIR) and T1-weighted images (T1WI) and to compare it to the performance of three spine surgeons.Differentiating between OVFs and MVFs is crucial for appropriate clinical staging and treatment planning. However, an accurate diagnosis is sometimes difficult. Recently, CNN modeling-an artificial intelligence technique-has gained popularity in the radiology field.We enrolled 50 patients with OVFs and 47 patients with MVFs who underwent thoracolumbar MRI. Sagittal STIR images and sagittal T1WI were used to train and validate the CNN models. To assess the performance of the CNN, the receiver operating characteristic (ROC) curve was plotted and the area under the curve (AUC) was calculated. We also compared the accuracy, sensitivity, and specificity of the diagnosis made by the CNN and three spine surgeons.The AUC of ROC curves of the CNN based on STIR images and T1WI were 0.967 and 0.984, respectively. The CNN model based on STIR images showed a performance of 93.8% accuracy, 92.5% sensitivity, and 94.9% specificity. On the other hand, the CNN model based on T1WI showed a performance of 96.4% accuracy, 98.1% sensitivity, and 94.9% specificity. The accuracy and specificity of the CNN using both STIR and T1WI were statistically equal to or better than that of three spine surgeons. There were no significant differences in sensitivity based on both STIR images and T1WI between the CNN and spine surgeons.We successfully differentiated OVFs and MVFs based on MRI with high accuracy using the CNN model, which was statistically equal or superior to that of the spine surgeons.Level of Evidence: 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稻子完成签到 ,获得积分10
39秒前
Ava应助lovelife采纳,获得10
2分钟前
2分钟前
zhangsan完成签到,获得积分10
3分钟前
侠客完成签到 ,获得积分10
3分钟前
阿木木完成签到,获得积分10
4分钟前
imi完成签到 ,获得积分10
4分钟前
5分钟前
pengpengyin发布了新的文献求助10
5分钟前
lovelife发布了新的文献求助10
5分钟前
pengpengyin完成签到,获得积分10
5分钟前
华仔应助slchein采纳,获得10
5分钟前
CHAI关注了科研通微信公众号
5分钟前
CHAI发布了新的文献求助10
6分钟前
chcmy完成签到 ,获得积分0
6分钟前
lanxinge完成签到 ,获得积分20
6分钟前
研友_nxw2xL完成签到,获得积分10
6分钟前
muriel完成签到,获得积分10
6分钟前
zai完成签到 ,获得积分20
9分钟前
11分钟前
slchein发布了新的文献求助10
11分钟前
11分钟前
slchein完成签到,获得积分10
11分钟前
YUYUYU发布了新的文献求助10
11分钟前
Ava应助hairgod采纳,获得10
13分钟前
13分钟前
胡呵呵发布了新的文献求助10
13分钟前
orixero应助胡呵呵采纳,获得10
13分钟前
英俊的铭应助YUYUYU采纳,获得10
13分钟前
张zhang完成签到 ,获得积分10
14分钟前
方白秋完成签到,获得积分10
15分钟前
15分钟前
hairgod发布了新的文献求助10
16分钟前
hairgod完成签到,获得积分10
16分钟前
汉堡包应助科研通管家采纳,获得10
16分钟前
17分钟前
Zephyr完成签到,获得积分10
17分钟前
ww完成签到,获得积分10
17分钟前
Zephyr发布了新的文献求助10
17分钟前
小白完成签到 ,获得积分10
17分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154987
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865856
捐赠科研通 2463969
什么是DOI,文献DOI怎么找? 1311680
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853