A Deep Convolutional Neural Network Using MRI: Automated Differentiation between Osteoporotic Vertebral Fracture and Vertebral Compression Fractures Due to Spinal Metastasis.

医学 放射科 椎骨 骨质疏松症 磁共振成像 脊髓压迫 椎体压缩性骨折
作者
Takafumi Yoda,Satoshi Maki,Takeo Furuya,Hajime Yokota,Koji Matsumoto,Hiromitsu Takaoka,Takuya Miyamoto,Sho Okimatsu,Yasuhiro Shiga,Kazuhide Inage,Sumihisa Orita,Yawara Eguchi,Takeshi Yamashita,Yoshitada Masuda,Takashi Uno,Seiji Ohtori
出处
期刊:Spine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/brs.0000000000004307
摘要

Retrospective study of magnetic resonance imaging (MRI).To assess the ability of a convolutional neural network (CNN) model to differentiate osteoporotic vertebral fractures (OVFs) and malignant vertebral compression fractures (MVFs) using short-TI inversion recovery (STIR) and T1-weighted images (T1WI) and to compare it to the performance of three spine surgeons.Differentiating between OVFs and MVFs is crucial for appropriate clinical staging and treatment planning. However, an accurate diagnosis is sometimes difficult. Recently, CNN modeling-an artificial intelligence technique-has gained popularity in the radiology field.We enrolled 50 patients with OVFs and 47 patients with MVFs who underwent thoracolumbar MRI. Sagittal STIR images and sagittal T1WI were used to train and validate the CNN models. To assess the performance of the CNN, the receiver operating characteristic (ROC) curve was plotted and the area under the curve (AUC) was calculated. We also compared the accuracy, sensitivity, and specificity of the diagnosis made by the CNN and three spine surgeons.The AUC of ROC curves of the CNN based on STIR images and T1WI were 0.967 and 0.984, respectively. The CNN model based on STIR images showed a performance of 93.8% accuracy, 92.5% sensitivity, and 94.9% specificity. On the other hand, the CNN model based on T1WI showed a performance of 96.4% accuracy, 98.1% sensitivity, and 94.9% specificity. The accuracy and specificity of the CNN using both STIR and T1WI were statistically equal to or better than that of three spine surgeons. There were no significant differences in sensitivity based on both STIR images and T1WI between the CNN and spine surgeons.We successfully differentiated OVFs and MVFs based on MRI with high accuracy using the CNN model, which was statistically equal or superior to that of the spine surgeons.Level of Evidence: 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神秘的甜儿关注了科研通微信公众号
2秒前
恋返竹询发布了新的文献求助30
7秒前
joff发布了新的文献求助10
7秒前
sh完成签到,获得积分10
7秒前
Lyubb完成签到 ,获得积分10
8秒前
9秒前
10秒前
12秒前
13秒前
Dryad完成签到,获得积分10
14秒前
奶茶咖啡冻完成签到,获得积分10
14秒前
wwww完成签到 ,获得积分10
15秒前
国家栋梁发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
鲤鱼火车应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
hhhblabla应助科研通管家采纳,获得10
17秒前
斯文可仁发布了新的文献求助10
17秒前
Hello应助科研通管家采纳,获得10
18秒前
鲤鱼火车应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得20
18秒前
Orange应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
Li完成签到,获得积分10
19秒前
MIST完成签到,获得积分10
19秒前
19秒前
zho发布了新的文献求助10
22秒前
666完成签到,获得积分10
25秒前
Lzr完成签到,获得积分10
25秒前
25秒前
国家栋梁完成签到,获得积分10
26秒前
SF完成签到,获得积分10
26秒前
Wait完成签到,获得积分10
26秒前
共享精神应助hh哈哈采纳,获得10
30秒前
Lzr发布了新的文献求助10
32秒前
专注的采梦完成签到 ,获得积分10
32秒前
zokker发布了新的文献求助10
32秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679112
求助须知:如何正确求助?哪些是违规求助? 3232084
关于积分的说明 9801328
捐赠科研通 2943285
什么是DOI,文献DOI怎么找? 1613814
邀请新用户注册赠送积分活动 761902
科研通“疑难数据库(出版商)”最低求助积分说明 737106