Predicting Polymer Flammability Using Machine Learning Methods

可燃性 易燃液体 电解质 聚合物 材料科学 燃烧 电池(电) 工艺工程 化学工程 计算机科学 法律工程学 热力学 复合材料 化学 有机化学 电极 工程类 功率(物理) 物理 物理化学
作者
Madeline Shelton,Shruti Venkatram,Rampi Ramprasad
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (7): 700-700
标识
DOI:10.1149/ma2019-02/7/700
摘要

Solid state batteries are a promising replacement for traditional liquid electrolyte batteries due to their superior stability and inflammability. Conventional lithium ion batteries use an organic liquid electrolyte, which is a potential hazard when it undergoes a decomposition reaction leading to an explosion. A solid, non- flammable electrolyte is a promising alternative. However, the chemical space of polymers is diverse and identifying new materials for electrolytes requires a critical screening criterion. Polymer flammability can be quantified using the limiting oxygen index (LOI), which is the minimum oxygen concentration necessary to sustain stable combustion. Polymers with an LOI greater than 21 are inflammable at room temperature and can be deemed safe for use in a battery. In this work, we predict the LOI for new polymers using a combination of data driven and machine learning methods. We have carefully curated a dataset of polymers and their associated LOI values, which are experimentally determined. A fingerprinting scheme is used to numerically represent the polymers from an atomistic to morphological length scale. We then use a gaussian progress regression model to map the polymers from their fingerprint space to their LOI. This model can then be used to rapidly predict the LOI of a polymer and its associated uncertainties. This study could rationally guide the design of solid polymer electrolytes which are thermally stable and inflammable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhuYJ发布了新的文献求助10
刚刚
hkh发布了新的文献求助10
刚刚
1秒前
Zion完成签到,获得积分0
2秒前
闪电小超人完成签到,获得积分10
2秒前
Jiang_sir完成签到,获得积分20
2秒前
stacy完成签到,获得积分10
2秒前
lh完成签到,获得积分10
2秒前
SYYY发布了新的文献求助10
2秒前
春风十里完成签到,获得积分10
2秒前
英文文献好难找完成签到 ,获得积分10
2秒前
01完成签到,获得积分10
3秒前
3秒前
SHAN发布了新的文献求助10
3秒前
苏苏完成签到,获得积分10
3秒前
fixit发布了新的文献求助10
4秒前
4秒前
4秒前
糊糊发布了新的文献求助10
4秒前
任小九完成签到,获得积分10
5秒前
6秒前
爱因斯宣发布了新的文献求助10
6秒前
俊秀的乐蓉完成签到,获得积分10
6秒前
张XX完成签到,获得积分10
7秒前
充电宝应助XUXU采纳,获得10
7秒前
everyone_woo发布了新的文献求助10
7秒前
yznfly应助冷酷仙境的羊男采纳,获得30
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
饮一杯为谁丶完成签到,获得积分10
8秒前
Alex应助科研通管家采纳,获得10
8秒前
Alex应助科研通管家采纳,获得20
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得30
9秒前
laryc完成签到,获得积分10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得50
9秒前
FashionBoy应助科研通管家采纳,获得30
9秒前
考拉完成签到 ,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128