细胞生物学
骨髓
祖细胞
造血
TLR2型
树突状细胞
生物
化学
免疫学
信号转导
干细胞
免疫系统
TLR4型
作者
Sidan Li,Juo-Chin Yao,Karolyn A. Oetjen,Joseph R. Krambs,Jun Xia,Jingzhu Zhang,Amy P. Schmidt,Nichole M. Helton,Robert S. Fulton,Sharon E. Heath,Isaiah R. Turnbull,Gabriel Mbalaviele,Timothy J. Ley,Matthew J. Walter,Daniel C. Link
出处
期刊:Blood
[American Society of Hematology]
日期:2022-10-06
卷期号:140 (14): 1607-1620
被引量:5
标识
DOI:10.1182/blood.2022016084
摘要
Abstract Hematopoietic stem/progenitor cells (HSPCs) reside in localized microenvironments, or niches, in the bone marrow that provide key signals regulating their activity. A fundamental property of hematopoiesis is the ability to respond to environmental cues such as inflammation. How these cues are transmitted to HSPCs within hematopoietic niches is not well established. Here, we show that perivascular bone marrow dendritic cells (DCs) express a high basal level of Toll-like receptor-1 (TLR1) and TLR2. Systemic treatment with a TLR1/2 agonist induces HSPC expansion and mobilization. It also induces marked alterations in the bone marrow microenvironment, including a decrease in osteoblast activity and sinusoidal endothelial cell numbers. TLR1/2 agonist treatment of mice in which Myd88 is deleted specifically in DCs using Zbtb46-Cre show that the TLR1/2-induced expansion of multipotent HPSCs, but not HSPC mobilization or alterations in the bone marrow microenvironment, is dependent on TLR1/2 signaling in DCs. Interleukin-1β (IL-1β) is constitutively expressed in both murine and human DCs and is further induced after TLR1/2 stimulation. Systemic TLR1/2 agonist treatment of Il1r1−/− mice show that TLR1/2-induced HSPC expansion is dependent on IL-1β signaling. Single-cell RNA-sequencing of low-risk myelodysplastic syndrome bone marrow revealed that IL1B and TLR1 expression is increased in DCs. Collectively, these data suggest a model in which TLR1/2 stimulation of DCs induces secretion of IL-1β and other inflammatory cytokines into the perivascular niche, which in turn, regulates multipotent HSPCs. Increased DC TLR1/2 signaling may contribute to altered HSPC function in myelodysplastic syndrome by increasing local IL-1β expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI