A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms

急诊分诊台 医学 接收机工作特性 头部外伤 算法 回顾性队列研究 创伤性脑损伤 曲线下面积 病历 创伤中心 机器学习 急诊医学 急诊科 队列 内科学 外科 精神科 计算机科学
作者
Daisu Abe,Motoki Inaji,Takeshi Hase,Shota Takahashi,Ryosuke Sakai,Fuga Ayabe,Yoji Tanaka,Yasuhiro Otomo,Taketoshi Maehara
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (6): e2216393-e2216393 被引量:28
标识
DOI:10.1001/jamanetworkopen.2022.16393
摘要

Importance

An adequate system for triaging patients with head trauma in prehospital settings and choosing optimal medical institutions is essential for improving the prognosis of these patients. To our knowledge, there has been no established way to stratify these patients based on their head trauma severity that can be used by ambulance crews at an injury site.

Objectives

To develop a prehospital triage system to stratify patients with head trauma according to trauma severity by using several machine learning techniques and to evaluate the predictive accuracy of these techniques.

Design, Setting, and Participants

This single-center retrospective cohort study was conducted by reviewing the electronic medical records of consecutive patients who were transported to Tokyo Medical and Dental University Hospital in Japan from April 1, 2018, to March 31, 2021. Patients younger than 16 years with cardiopulmonary arrest on arrival or with a significant amount of missing data were excluded.

Main Outcomes and Measures

Machine learning–based prediction models to detect the presence of traumatic intracranial hemorrhage were constructed. The predictive accuracy of the models was evaluated with the area under the receiver operating curve (ROC-AUC), area under the precision recall curve (PR-AUC), sensitivity, specificity, and other representative statistics.

Results

A total of 2123 patients (1527 male patients [71.9%]; mean [SD] age, 57.6 [19.8] years) with head trauma were enrolled in this study. Traumatic intracranial hemorrhage was detected in 258 patients (12.2%). Among several machine learning algorithms, extreme gradient boosting (XGBoost) achieved the mean (SD) highest ROC-AUC (0.78 [0.02]) and PR-AUC (0.46 [0.01]) in cross-validation studies. In the testing set, the ROC-AUC was 0.80, the sensitivity was 74.0% (95% CI, 59.7%-85.4%), and the specificity was 74.9% (95% CI, 70.2%-79.3%). The prediction model using the National Institute for Health and Care Excellence (NICE) guidelines, which was calculated after consultation with physicians, had a sensitivity of 72.0% (95% CI, 57.5%-83.8%) and a specificity of 73.3% (95% CI, 68.7%-77.7%). The McNemar test revealed no statistically significant differences between the XGBoost algorithm and the NICE guidelines for sensitivity or specificity (P = .80 andP = .55, respectively).

Conclusions and Relevance

In this cohort study, the prediction model achieved a comparatively accurate performance in detecting traumatic intracranial hemorrhage using only the simple pretransportation information from the patient. Further validation with a prospective multicenter data set is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
FashionBoy应助believe采纳,获得10
1秒前
丘比特应助卡尔采纳,获得10
1秒前
万诚信发布了新的文献求助10
1秒前
2秒前
Ava应助露似珍珠月似弓采纳,获得10
2秒前
2秒前
科研小白发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
哆啦的空间站应助gao采纳,获得10
4秒前
粗心的电源完成签到,获得积分10
4秒前
5秒前
guo发布了新的文献求助10
5秒前
桐桐应助想人陪采纳,获得10
6秒前
6秒前
思源应助看文献了采纳,获得10
6秒前
8秒前
大牛关注了科研通微信公众号
8秒前
bkagyin应助快来看文献采纳,获得10
8秒前
kk发布了新的文献求助10
8秒前
暴躁的梦发布了新的文献求助10
9秒前
wll完成签到,获得积分20
9秒前
9秒前
vikoel完成签到,获得积分10
9秒前
善学以致用应助霸霸采纳,获得10
9秒前
9秒前
露似珍珠月似弓完成签到,获得积分10
9秒前
10秒前
10秒前
yys完成签到,获得积分10
12秒前
共享精神应助十谦先采纳,获得10
12秒前
田様应助eyre采纳,获得10
12秒前
12秒前
喃恬发布了新的文献求助10
12秒前
12秒前
yys10l完成签到,获得积分10
13秒前
香蕉觅云应助朴实的不悔采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003579
求助须知:如何正确求助?哪些是违规求助? 4248189
关于积分的说明 13235662
捐赠科研通 4047228
什么是DOI,文献DOI怎么找? 2214242
邀请新用户注册赠送积分活动 1224324
关于科研通互助平台的介绍 1144641