A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms

急诊分诊台 医学 接收机工作特性 头部外伤 算法 回顾性队列研究 创伤性脑损伤 曲线下面积 病历 创伤中心 机器学习 急诊医学 急诊科 队列 内科学 外科 精神科 计算机科学
作者
Daisu Abe,Motoki Inaji,Takeshi Hase,Shota Takahashi,Ryosuke Sakai,Fuga Ayabe,Yoji Tanaka,Yasuhiro Otomo,Taketoshi Maehara
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (6): e2216393-e2216393 被引量:28
标识
DOI:10.1001/jamanetworkopen.2022.16393
摘要

Importance

An adequate system for triaging patients with head trauma in prehospital settings and choosing optimal medical institutions is essential for improving the prognosis of these patients. To our knowledge, there has been no established way to stratify these patients based on their head trauma severity that can be used by ambulance crews at an injury site.

Objectives

To develop a prehospital triage system to stratify patients with head trauma according to trauma severity by using several machine learning techniques and to evaluate the predictive accuracy of these techniques.

Design, Setting, and Participants

This single-center retrospective cohort study was conducted by reviewing the electronic medical records of consecutive patients who were transported to Tokyo Medical and Dental University Hospital in Japan from April 1, 2018, to March 31, 2021. Patients younger than 16 years with cardiopulmonary arrest on arrival or with a significant amount of missing data were excluded.

Main Outcomes and Measures

Machine learning–based prediction models to detect the presence of traumatic intracranial hemorrhage were constructed. The predictive accuracy of the models was evaluated with the area under the receiver operating curve (ROC-AUC), area under the precision recall curve (PR-AUC), sensitivity, specificity, and other representative statistics.

Results

A total of 2123 patients (1527 male patients [71.9%]; mean [SD] age, 57.6 [19.8] years) with head trauma were enrolled in this study. Traumatic intracranial hemorrhage was detected in 258 patients (12.2%). Among several machine learning algorithms, extreme gradient boosting (XGBoost) achieved the mean (SD) highest ROC-AUC (0.78 [0.02]) and PR-AUC (0.46 [0.01]) in cross-validation studies. In the testing set, the ROC-AUC was 0.80, the sensitivity was 74.0% (95% CI, 59.7%-85.4%), and the specificity was 74.9% (95% CI, 70.2%-79.3%). The prediction model using the National Institute for Health and Care Excellence (NICE) guidelines, which was calculated after consultation with physicians, had a sensitivity of 72.0% (95% CI, 57.5%-83.8%) and a specificity of 73.3% (95% CI, 68.7%-77.7%). The McNemar test revealed no statistically significant differences between the XGBoost algorithm and the NICE guidelines for sensitivity or specificity (P = .80 andP = .55, respectively).

Conclusions and Relevance

In this cohort study, the prediction model achieved a comparatively accurate performance in detecting traumatic intracranial hemorrhage using only the simple pretransportation information from the patient. Further validation with a prospective multicenter data set is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqing完成签到,获得积分10
1秒前
完美的鹤完成签到,获得积分10
1秒前
jin_strive完成签到,获得积分0
1秒前
缘分完成签到,获得积分10
2秒前
萌兰134完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
CYL07完成签到 ,获得积分10
3秒前
Archer完成签到,获得积分10
4秒前
4秒前
LJJ完成签到 ,获得积分10
4秒前
rayqiang完成签到,获得积分0
5秒前
susan完成签到 ,获得积分10
5秒前
5秒前
海东来应助科研通管家采纳,获得30
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
6秒前
小美美完成签到 ,获得积分10
6秒前
6秒前
6秒前
安好发布了新的文献求助10
7秒前
8秒前
小马甲应助lhcshuang采纳,获得10
9秒前
李雯完成签到,获得积分10
9秒前
巫马沛春完成签到,获得积分10
9秒前
学术老6完成签到,获得积分10
10秒前
任性半凡完成签到,获得积分10
10秒前
wmuzhao发布了新的文献求助10
11秒前
hao完成签到,获得积分10
12秒前
大吴克发布了新的文献求助10
12秒前
犇骉发布了新的文献求助10
12秒前
泡芙完成签到,获得积分10
12秒前
不想太多发布了新的文献求助10
13秒前
tommmmmm15完成签到,获得积分10
13秒前
SSDlk发布了新的文献求助10
13秒前
黄瓜橙橙发布了新的文献求助10
15秒前
gk完成签到,获得积分10
15秒前
凡而不庸完成签到,获得积分10
16秒前
危机的慕卉完成签到 ,获得积分10
17秒前
骑驴追火箭完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027