亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms

急诊分诊台 医学 接收机工作特性 头部外伤 算法 回顾性队列研究 创伤性脑损伤 曲线下面积 病历 创伤中心 机器学习 急诊医学 急诊科 队列 内科学 外科 精神科 计算机科学
作者
Daisu Abe,Motoki Inaji,Takeshi Hase,Shota Takahashi,Ryosuke Sakai,Fuga Ayabe,Yoji Tanaka,Yasuhiro Otomo,Taketoshi Maehara
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (6): e2216393-e2216393 被引量:28
标识
DOI:10.1001/jamanetworkopen.2022.16393
摘要

Importance

An adequate system for triaging patients with head trauma in prehospital settings and choosing optimal medical institutions is essential for improving the prognosis of these patients. To our knowledge, there has been no established way to stratify these patients based on their head trauma severity that can be used by ambulance crews at an injury site.

Objectives

To develop a prehospital triage system to stratify patients with head trauma according to trauma severity by using several machine learning techniques and to evaluate the predictive accuracy of these techniques.

Design, Setting, and Participants

This single-center retrospective cohort study was conducted by reviewing the electronic medical records of consecutive patients who were transported to Tokyo Medical and Dental University Hospital in Japan from April 1, 2018, to March 31, 2021. Patients younger than 16 years with cardiopulmonary arrest on arrival or with a significant amount of missing data were excluded.

Main Outcomes and Measures

Machine learning–based prediction models to detect the presence of traumatic intracranial hemorrhage were constructed. The predictive accuracy of the models was evaluated with the area under the receiver operating curve (ROC-AUC), area under the precision recall curve (PR-AUC), sensitivity, specificity, and other representative statistics.

Results

A total of 2123 patients (1527 male patients [71.9%]; mean [SD] age, 57.6 [19.8] years) with head trauma were enrolled in this study. Traumatic intracranial hemorrhage was detected in 258 patients (12.2%). Among several machine learning algorithms, extreme gradient boosting (XGBoost) achieved the mean (SD) highest ROC-AUC (0.78 [0.02]) and PR-AUC (0.46 [0.01]) in cross-validation studies. In the testing set, the ROC-AUC was 0.80, the sensitivity was 74.0% (95% CI, 59.7%-85.4%), and the specificity was 74.9% (95% CI, 70.2%-79.3%). The prediction model using the National Institute for Health and Care Excellence (NICE) guidelines, which was calculated after consultation with physicians, had a sensitivity of 72.0% (95% CI, 57.5%-83.8%) and a specificity of 73.3% (95% CI, 68.7%-77.7%). The McNemar test revealed no statistically significant differences between the XGBoost algorithm and the NICE guidelines for sensitivity or specificity (P = .80 andP = .55, respectively).

Conclusions and Relevance

In this cohort study, the prediction model achieved a comparatively accurate performance in detecting traumatic intracranial hemorrhage using only the simple pretransportation information from the patient. Further validation with a prospective multicenter data set is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
1分钟前
1分钟前
自信秋柔给自信秋柔的求助进行了留言
1分钟前
11发布了新的文献求助10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
爱静静完成签到,获得积分0
2分钟前
lovelife发布了新的文献求助10
2分钟前
lovelife完成签到,获得积分10
2分钟前
2分钟前
11完成签到,获得积分10
2分钟前
自信秋柔完成签到,获得积分20
2分钟前
3分钟前
巴斯光年111完成签到,获得积分10
3分钟前
酷波er应助巴斯光年111采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
研友_892kOL完成签到,获得积分10
4分钟前
生姜批发刘哥完成签到 ,获得积分10
4分钟前
4分钟前
jyy发布了新的文献求助200
4分钟前
4分钟前
完美世界应助地尔硫卓采纳,获得10
4分钟前
小文子完成签到 ,获得积分10
4分钟前
烂漫的汲完成签到,获得积分10
4分钟前
4分钟前
香蕉觅云应助毕襄采纳,获得10
4分钟前
kang发布了新的文献求助10
4分钟前
自信秋柔发布了新的文献求助10
4分钟前
4分钟前
毕襄发布了新的文献求助10
5分钟前
毕襄完成签到,获得积分20
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344197
求助须知:如何正确求助?哪些是违规求助? 2971147
关于积分的说明 8646779
捐赠科研通 2651434
什么是DOI,文献DOI怎么找? 1451760
科研通“疑难数据库(出版商)”最低求助积分说明 672282
邀请新用户注册赠送积分活动 661790