Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 数学优化 运筹学 基线(sea) 概率分布 工程类 数学 人工智能 统计 海洋学 操作系统 地质学
作者
Yue Zhao,Zhi Chen,Andrew E. B. Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:161: 197-217 被引量:22
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉生发布了新的文献求助30
刚刚
乐观的酸奶完成签到,获得积分10
2秒前
gengwenjing发布了新的文献求助10
2秒前
sota发布了新的文献求助10
3秒前
spenley完成签到,获得积分0
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
njgi发布了新的文献求助10
4秒前
4秒前
猜对了就告诉你完成签到 ,获得积分10
5秒前
6秒前
wise111发布了新的文献求助10
6秒前
汉堡包应助晴朗采纳,获得10
7秒前
xiaoqi发布了新的文献求助10
8秒前
执着绿草发布了新的文献求助10
11秒前
jixiaoran完成签到,获得积分10
11秒前
12秒前
笑点低关注了科研通微信公众号
13秒前
13秒前
阿坤完成签到 ,获得积分10
15秒前
蓝天应助容若采纳,获得10
15秒前
充电宝应助leez采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助30
17秒前
18秒前
小蘑菇应助刘言采纳,获得10
20秒前
20秒前
搞怪山晴发布了新的文献求助10
20秒前
22秒前
JamesPei应助直率的问筠采纳,获得10
23秒前
朻安完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
星辰大海应助黑YA采纳,获得10
25秒前
26秒前
chenhouhan发布了新的文献求助20
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595