Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 数学优化 运筹学 基线(sea) 概率分布 工程类 数学 人工智能 统计 海洋学 操作系统 地质学
作者
Yue Zhao,Zhi Chen,Andrew E. B. Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:161: 197-217 被引量:22
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥利奥爱好者完成签到,获得积分10
2秒前
不说再见完成签到,获得积分10
2秒前
4秒前
5秒前
5秒前
啊吼吼发布了新的文献求助10
5秒前
斯文的秋蝶关注了科研通微信公众号
5秒前
longer发布了新的文献求助10
6秒前
阿坝完成签到,获得积分20
6秒前
6秒前
斯文败类应助居居采纳,获得10
7秒前
Criminology34举报科研助理求助涉嫌违规
8秒前
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
852应助阿坝采纳,获得10
10秒前
玖玖完成签到,获得积分10
12秒前
111111发布了新的文献求助10
12秒前
小菜狗发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
天天快乐应助123采纳,获得10
14秒前
15秒前
orixero应助玖玖采纳,获得10
15秒前
无情的绮彤完成签到,获得积分10
15秒前
15秒前
仁爱听露发布了新的文献求助10
17秒前
cc完成签到 ,获得积分10
18秒前
19秒前
居居发布了新的文献求助10
19秒前
瞅一瞅给瞅一瞅的求助进行了留言
20秒前
20秒前
cyx发布了新的文献求助10
20秒前
林天翼发布了新的文献求助10
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
Orange应助hakei采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323