Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 模棱两可 数学优化 运筹学 稳健性(进化) 概率分布
作者
Yue Zhao,Zhi Chen,Andrew Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:161: 197-217
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刺槐发布了新的文献求助10
1秒前
熹微发布了新的文献求助10
1秒前
2秒前
茉莉发布了新的文献求助10
2秒前
111发布了新的文献求助10
3秒前
HtheJ发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
7秒前
江峰发布了新的文献求助10
8秒前
8秒前
大强发布了新的文献求助10
9秒前
可爱的函函应助mahaha采纳,获得10
9秒前
10秒前
科研通AI2S应助Bule17采纳,获得10
10秒前
Owen应助宋心茹采纳,获得10
10秒前
科研通AI5应助甜蜜的大象采纳,获得10
12秒前
华仔应助灵巧慕凝采纳,获得10
12秒前
赵雷发布了新的文献求助10
12秒前
Rita发布了新的文献求助10
12秒前
明理明杰发布了新的文献求助10
12秒前
科研通AI5应助qing采纳,获得10
13秒前
nyh发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
Casper完成签到,获得积分10
14秒前
脑洞疼应助吱吱采纳,获得10
15秒前
xiaoyi发布了新的文献求助10
16秒前
我是老大应助浅笑采纳,获得10
16秒前
16秒前
17秒前
可爱的函函应助111采纳,获得10
17秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
18秒前
宋圩应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769859
求助须知:如何正确求助?哪些是违规求助? 3314919
关于积分的说明 10174140
捐赠科研通 3030186
什么是DOI,文献DOI怎么找? 1662685
邀请新用户注册赠送积分活动 795067
科研通“疑难数据库(出版商)”最低求助积分说明 756560