Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 模棱两可 数学优化 运筹学 稳健性(进化) 概率分布
作者
Yue Zhao,Zhi Chen,Andrew Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:161: 197-217
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
nbing完成签到,获得积分10
刚刚
紫色de泡沫完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
小飞龙完成签到,获得积分10
1秒前
plq发布了新的文献求助10
1秒前
1秒前
yj794421355发布了新的文献求助10
1秒前
MchemG应助17853723535采纳,获得10
1秒前
好好学习发布了新的文献求助10
1秒前
吴圳发布了新的文献求助10
1秒前
栀鱼完成签到 ,获得积分10
1秒前
瘾9完成签到,获得积分10
1秒前
Rondab应助甘地采纳,获得10
1秒前
含含含完成签到,获得积分10
3秒前
3秒前
麦子完成签到 ,获得积分10
4秒前
上好佳完成签到,获得积分10
4秒前
4秒前
kiminonawa完成签到,获得积分0
5秒前
懦弱的咖啡豆完成签到,获得积分10
5秒前
5秒前
小young完成签到 ,获得积分10
5秒前
honey完成签到,获得积分10
5秒前
lili完成签到 ,获得积分10
6秒前
Son4904发布了新的文献求助10
6秒前
6秒前
6秒前
ghmghm9910完成签到 ,获得积分10
7秒前
8秒前
kk发布了新的文献求助10
8秒前
222完成签到,获得积分10
8秒前
xr发布了新的文献求助10
8秒前
TUYANG完成签到,获得积分10
9秒前
无花果应助T拐拐采纳,获得10
9秒前
9秒前
爱学习的毛完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355