Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 数学优化 运筹学 基线(sea) 概率分布 工程类 数学 人工智能 统计 海洋学 操作系统 地质学
作者
Yue Zhao,Zhi Chen,Andrew E. B. Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:161: 197-217 被引量:22
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starlx0813发布了新的文献求助10
1秒前
2秒前
纯真的盼柳完成签到,获得积分10
2秒前
温婉的凝丹完成签到,获得积分10
2秒前
3秒前
胡姬花发布了新的文献求助10
4秒前
4秒前
4秒前
蓦然发布了新的文献求助10
5秒前
5秒前
852应助喜悦的皮卡丘采纳,获得10
5秒前
5秒前
鸭爪爪发布了新的文献求助10
6秒前
7秒前
7秒前
Ankie发布了新的文献求助10
7秒前
Akira发布了新的文献求助10
7秒前
8秒前
lili完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
勤劳的斑马完成签到,获得积分10
11秒前
11秒前
完美世界应助Windycityguy采纳,获得10
11秒前
深情安青应助starlx0813采纳,获得10
12秒前
12秒前
义气丹雪应助细腻听白采纳,获得100
12秒前
Re发布了新的文献求助10
12秒前
科研通AI6.1应助热情千风采纳,获得10
13秒前
雨柏完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
17秒前
orixero应助年轻就要气盛采纳,获得10
18秒前
violet完成签到,获得积分20
19秒前
充电宝应助健忘的雨安采纳,获得10
21秒前
dfggg发布了新的文献求助10
21秒前
饱满的问丝完成签到,获得积分10
22秒前
23秒前
大水完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848