Vessel deployment with limited information: Distributionally robust chance constrained models

软件部署 稳健优化 杠杆(统计) 计算机科学 数学优化 运筹学 基线(sea) 概率分布 工程类 数学 人工智能 统计 海洋学 操作系统 地质学
作者
Yue Zhao,Zhi Chen,Andrew E. B. Lim,Zhenzhen Zhang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:161: 197-217 被引量:22
标识
DOI:10.1016/j.trb.2022.05.006
摘要

This paper studies the fundamental vessel deployment problem in the liner shipping industry, which decides the numbers of mixed-type ships and their sailing frequencies on fixed routes to provide sufficient vessel capacity for fulfilling stochastic shipping demands with high probability. In reality, it is usually difficult (if not impossible) to acquire a precise joint distribution of shipping demands, as they may fluctuate heavily due to the fast-changing economic environment or unpredictable events. To address this challenge, we leverage recent advances in distributionally robust optimization and propose distribution-free robust joint chance constrained models. In the first model, we only assume support, mean as well as lower-order dispersion information of the shipping demands and provide high-quality solutions via a sequential convex optimization algorithm. Comparing with existing literature that chiefly studies individual chance constraints based on concentration inequalities and the union bound, our approach yields solutions that are less conservative and less vulnerable to the magnitude of demand dispersion. We also extend to a data-driven model based on the Wasserstein distance, which suits well in situations where limited historical demand samples are available. Our distributionally robust chance constrained models could serve as a baseline model for vessel deployment, into which we believe additional practical constraints could be incorporated seamlessly. • Distributionally robust joint chance constrained models for the vessel deployment problem. • Examples on the meaning and applications of the mean and dispersion ambiguity set in maritime industry. • Extensive experiments in data-driven setting. • More robust but less conservative deployment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛洛洛完成签到,获得积分10
1秒前
2秒前
2秒前
yy完成签到,获得积分10
2秒前
4秒前
大树应助孔乙己采纳,获得10
4秒前
4秒前
daaqiu完成签到,获得积分10
4秒前
虚幻谷波完成签到,获得积分10
5秒前
fan发布了新的文献求助50
5秒前
5秒前
后来发布了新的文献求助10
5秒前
蒋j完成签到,获得积分10
5秒前
super chan完成签到,获得积分10
5秒前
吃人陈完成签到,获得积分10
6秒前
6秒前
6秒前
大玉124完成签到 ,获得积分10
6秒前
灵光一闪完成签到,获得积分10
6秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
6秒前
Something完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
ding应助张远幸采纳,获得10
8秒前
小冯发布了新的文献求助150
8秒前
8秒前
驰骋完成签到,获得积分10
9秒前
科研通AI6应助kid采纳,获得30
9秒前
Jasper应助典雅寻桃采纳,获得20
9秒前
9秒前
10秒前
火星上的百川完成签到,获得积分10
10秒前
Channing发布了新的文献求助20
10秒前
10秒前
10秒前
Randy发布了新的文献求助10
10秒前
5114完成签到,获得积分10
11秒前
爱笑的幼菱完成签到,获得积分10
11秒前
yeyetomatoe发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184